Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:34:20.389Z Has data issue: false hasContentIssue false

Structural and Chemical Characterization of Tungsten Gate Stack for 1 Gb Dram

Published online by Cambridge University Press:  14 March 2011

O. Gluschenkov
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, Hopewell Junction, NY
J. Benedict
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, Hopewell Junction, NY
L.A. Clevenger
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, Hopewell Junction, NY
P. DeHaven
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, Hopewell Junction, NY
C. Dziobkowski
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, Hopewell Junction, NY
J. Faltermeier
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, Hopewell Junction, NY
C. Lin
Affiliation:
Infineon Technologies, Hopewell Junction, NY; DRAM Development Alliance IBM/Infineon, IBM Semiconductor Research & Development Center, Hopewell Junction, NY
I. McStay
Affiliation:
Infineon Technologies, Hopewell Junction, NY; DRAM Development Alliance IBM/Infineon, IBM Semiconductor Research & Development Center, Hopewell Junction, NY
K. Wong
Affiliation:
IBM Microelectronics, Semiconductor R&D Center, Hopewell Junction, NY
Get access

Abstract

Material interaction during integration of tungsten gate stack for 1 Gb DRAM was investigated by Transition Electron Microscopy (TEM), X-ray Diffraction analysis (XRD) and Auger Electron Spectroscopy (AES). During selective side-wall oxidation tungsten gate conductor undergoes a structural transformation. The transformation results in the reduction of tungsten crystal lattice spacing, re-crystallization of tungsten and/or growth of grains. During a highly selective oxidation process, a relatively small but noticeable amount of oxygen was incorporated into the tungsten layer. The incorporation of oxygen is attributed to the formation of a stable WO x (x<2) composite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, M., Yamamoto, N., Yoshida, M., Tanabe, Y., Umezawa, T., Kawakami, H., Nagahama, T., Fukuda, N., Hanaoka, Y., Kawakita, K., Fukuda, T., Sekiguchi, T., Tadaki, Y., and Kobayashi, N., Materials Research Society, Conference Proceedings ULSI XIV, 625630 (1999).Google Scholar
2. Lee, B.H., Sohn, D. K., Park, J.S., Huh, Y.J., Byun, S.B., and Kim, J.J., IEDM, 385 (1998).Google Scholar
3. Hiura, Y., Azuma, A., Akasaka, Y., Miyano, K., Honjo, A., Tsuchida, K., Toyoshima, Y., Suguro, K., and Kohyama, Y., IEDM, 393 (1998).Google Scholar
4. Ohishi, K., Yamamoto, N., Uchino, Y., Janaoka, Y., Tsuchiya, T., Nonaka, Y., Tanabe, Y., Umezawa, Y., Kukuda, N., Mitani, S., and Shiba, T., IEDM, 397 (1998)Google Scholar
5. Nakajima, K., Akasaka, Y., Miyano, K., Yakahashi, M., Suehiro, S., and Suguro, K., Appl. Surf. Sci., 117, 312 (1997).10.1016/S0169-4332(97)80100-6Google Scholar
6. Iwata, S., Yamamoto, N., Kobayashi, N., Terada, T., and Mizutani, T., IEEE Trans. Electron Devices, ED–31, 1174 (1984).10.1109/T-ED.1984.21684Google Scholar
7. Lin, B., Hwang, M., Lu, J.P., Hsu, W.Y., Pas, M., Piccirillo, J., Miner, G., O'Connor, K., Xing, G., Lopes, D., Mat. Res. Soc. Symp. Proc., vol. 525, 359364 (1998)10.1557/PROC-525-359Google Scholar
8. Joo, H. S., Ng, B., Lopes, D., Miner, G., Electrochemical Society Proceedings, vol. 99–18, 203209 (1999)Google Scholar