Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T18:35:51.059Z Has data issue: false hasContentIssue false

Structural and Chemical Characterisation of Ni/Ti Multilayers with TEM

Published online by Cambridge University Press:  15 February 2011

K. Leifer
Affiliation:
École Polytechnique Fédérale de Lausanne, Centre Interdépartemental de Microscopie Électronique, 1015 Lausanne, Switzerland
P.A. Buffat
Affiliation:
École Polytechnique Fédérale de Lausanne, Centre Interdépartemental de Microscopie Électronique, 1015 Lausanne, Switzerland
P. Böni
Affiliation:
Paul Scherrer Institut, Labor füir Neutronenstreuung ETH&PSI, 5234 Villigen, Switzerland
D. Clemens
Affiliation:
Paul Scherrer Institut, Labor füir Neutronenstreuung ETH&PSI, 5234 Villigen, Switzerland
H.P. Friedli
Affiliation:
Paul Scherrer Institut, Labor füir Neutronenstreuung ETH&PSI, 5234 Villigen, Switzerland
H. Grimmer
Affiliation:
Paul Scherrer Institut, Labor füir Neutronenstreuung ETH&PSI, 5234 Villigen, Switzerland
I.S. Anderson
Affiliation:
Institut Laue Langevin, PH4, 38042 Grenoble, France
Get access

Abstract

Ni/Ti multilayers were prepared by argon sputtering. We observe changes of latticeparameter, strain, grain size and texture depending on the single layer thickness and thepressure of the sputter gas. Moreover the quality of the layers can be improved by including impurities during the growth of the Ni and the Ti layers. Generally the results show that such additions lead to more planar layers and to structural changes within the individual layers. Although we observe hexagonal Titanium in the as-deposited films, some of the specimens which were prepared for TEM observation reveal an fcc-Ti structure.The chemical composition of the layers has been investigated in a field emission microscope using a probe diameter of nmmC. omposition profiles were determined by evaluating EELS spectra taken at each point in an automated scan, In this way it was possible to determine residual concentrations of Ni in Ti layers lower than 0.5%. In the samples studied the interface width appears to be of the order of 4-5nm and the concentration profiles of Ni—Ti interfaces appear to be different from those of the Ti—Ni interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mezei, F., Commun. Phys., 1 (1976). 81.Google Scholar
[2] Turchin, V. F., Deposited Paper, At. Energy, 22 (1967)..Google Scholar
[3] Keem, J. E., Wood, J., Grupido, N., Hart, K., Nutt, S., Reichel, D.G., Yelon, W.B., SPIE, 983 (1988). 38.Google Scholar
[4] Elsenhans, O., Böni, P., Friedli, H. P., Grimmer, H., Buffat, P., Leifer, K., Söchtig, J., Anderson, I. S., Thin Solid Films, 246 (1994). 110.Google Scholar
[5] Vidal, B., Jiang, Z., Samuel, F., SPIE, 1738 (1992). 30.Google Scholar
[6] Grimmer, H., Böni, P., Elsenhans, O., Friedli, H.P., Anderson, I.S., Leifer, K., Buffat, P.A., Mat. Sc. Forum, 126–128 (1993). 615.Google Scholar
[7] Böni, P., Anderson, I.S., Buffat, P.A., Elsenhans, O., Friedli, H.P., Grimmer, H., Hauert, R., Leifer, K., Penfold, J., Sbchtig, J.S., ICANS-XII Int. Coll.on Adv. Neutron Sources, Abingdon, UK, I (1994) 347.Google Scholar
[8] Jankowski, A.F., Wall, M.A., J. MaterRes, 9 (1994). 31.Google Scholar
[9] Hollanders, M.A., Thijsse, B.J., Mittemeijer, E.J., Phys. Rev. B, 42 (1990). 5481.Google Scholar
[10] Clemens, B.M., J.Appl.Phys., 61 (1987). 4525.Google Scholar
[11] Cullity, B.D., Elements of X-Ray Diffraction, (Addison-Wesley Publishing Company, Inc.), page 501ff.Google Scholar
[12] Egerton, R.F., Electron Energy Loss Spectroscopy, (Plenum Press, New York,1986), p. 263ff.Google Scholar