Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:30:46.587Z Has data issue: false hasContentIssue false

Structural Analyses of Metal/GaAs Contacts and Ge/GaAs and AlAs/GaAs Heterojunctions

Published online by Cambridge University Press:  21 February 2011

T. S. Kuan*
Affiliation:
IBM Thomas J. Watson Research CenterYorktown Heights, New York 10598
Get access

Abstract

Cross-sectional observations of interface structures at high magnification by TEM and STEM offer excellent lateral and depth resolution which are not available by other analytical techniques. This technique has recently been applied by the author to study metal/GaAs contacts and MBE-grown semiconductor heterojunctions. Specific observations on alloyed Au-Ni-Ge/GaAs and Pd/GaAs interfaces and on epitaxially grown Ge-GaAs and AlAs-GaAs superlattice structures are reviewed in this paper. The high spatial resolution of the energy dispersive x-ray analysis performed in a STEM is most useful in the studies of complicated metal/ GaAs interfacial reactions. However, to resolve on an atomic scale the compositional profile across a heterojunction, one has to rely on diffraction technique. The detailed analyses of these interfacial reactions and structures are shown to be essential to the understanding and control of the electronic behavior associated with these interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yokoyama, N., Mimura, T., Fukuta, M., and Ishikawa, H., 1981 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 218.Google Scholar
2. Mimura, T., Joshin, K., Hiyamizu, S., Hikosaka, K., and Abe, M., Jpn. J. Appl. Phys. 20, L598 (1981).Google Scholar
3. Robinson, G. Y., Thin Solid Films 72, 129 (1980).Google Scholar
4. Ogawa, M., J. Appl. Phys. 51, 406 (1980).Google Scholar
5. Wittmer, M., Pretorius, R., Mayer, J. W., and Nicolet, M-A., Solid-State Electron. 20, 433 (1977).Google Scholar
6. Kuan, T. S., Batson, P. E., Jackson, T. N., Rupprecht, H., and Wilkie, E. L., J. Appl. Phys. 54, 6952 (1983).Google Scholar
7. Wyckoff, R. W. G., Crystal Structures, Second Edition, Vol. 1, (Interscience Publishers, Inc., 1963) pp .122.Google Scholar
8. Braslau, N.,J. Vac. Sci. Technol. 19, 803 (1981).Google Scholar
9. Olowolafe, J. O., Ho, P. S., Hovel, H. J., Lewis, J. E., and Woodall, J. M., J. Appl. Phys. 50, 955 (1979).Google Scholar
10. Oustry, A., Caumont, M., Escaut, A., Martinez, A., and Toprasertpong, B., Thin Solid Films 79, 251 (1981).CrossRefGoogle Scholar
11. Zeng, X. and Chung, D. D. L., J.Vac. Sci. Technol. 21, 611 (1982).CrossRefGoogle Scholar
12. Oelhafen, P., Freeouf, J. L., Kuan, T. S., Jackson, T. N., and Batson, P. E., J. Vac. Sci. Technol. B 1, 588 (1983).CrossRefGoogle Scholar
13. Kuan, T. S., Freeouf, J. L., Batson, P. E., and Wilkie, E. L. (to be published).Google Scholar
14. Kuan, T. S. and Freeouf, J. L., Proceedings of the 37th Electron Microscopy Society of America Annual Meeting, pp. 696 (1979).Google Scholar
15. Petroff, P. M., Gossard, A. C., Savage, A., and Wiegmann, W., J. Cryst. Growth 46, 172 (1979).Google Scholar
16. Kuan, T. S. and Chang, C. A., J. Appl. Phys. 54, 4408 (1983).Google Scholar
17. Petroff, P. M., J. Vac. Sci. Technol. 14, 973 (1977).CrossRefGoogle Scholar
18. Kuan, T. S., Wang, W. I., and Wilkie, E. L. (to be published).Google Scholar
19. Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, (Oxford University Press, Fair Lawn, N. J., 1959) pp. 97.Google Scholar