Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:52:37.117Z Has data issue: false hasContentIssue false

Stronger and Longer Synthetic Collagen

Published online by Cambridge University Press:  01 February 2011

Ronald T. Raines*
Affiliation:
[email protected], University of Wisconsin-Madison, Department of Biochemistry, 433 Babcock Drive, Madison, WI, 53706-1544, United States, 608-262-8588, 608-262-3453
Get access

Abstract

Collagen is the most abundant protein in the human proteome. The post-translational modification of collagen by the enzyme prolyl 4-hydroxylase increases markedly the conformational stability of the collagen triple helix. We have discovered that a previously unappreciated force—stereoelectronic effects—is responsible for this increased stability. By exploiting these stereoelectronic effects (e.g., the gauche effect and n→π* interaction) and reciprocal steric effects, we have created synthetic collagen of unprecedented stability. We have also used the molecular self-assembly of triple-helical fragments to create synthetic collagen of unprecedented length. These synthetic collagens have numerous applications in biotechnology and biomedicine.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Myllyharju, J. and Kivirikko, K. I., Ann. Med. 33, 721 (2001).Google Scholar
2. Ricard-Blum, S., Ruggiero, F., and Rest, M. van der, Top. Curr. Chem. 247, 3584 (2005).Google Scholar
3. Schweitzer, M. H., Suo, Z., Avci, R., Asara, J. M., Allen, M. A., Arce, F. T., and Horner, J. R., Science 316, 277280 (2007).Google Scholar
4. Asara, J. M., Schweitzer, M. H., Freimark, L. M., Phillips, M., and Cantley, L. C., Science 316, 280285 (2007).Google Scholar
5. Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., M. T. P. Gilbert, Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D. A., and Cooper, A., Science 300, 791795 (2003).Google Scholar
6. Binladen, J., Gilbert, M. T., and Willerslev, E., Biol. Lett. 3, 5556 (2007).Google Scholar
7. Radzicka, A. and Wolfenden, R., J. Am. Chem. Soc. 118, 61056109 (1996).Google Scholar
8. Smith, R. M. and Hansen, D. E., J. Am. Chem. Soc. 120, 89108913 (1998).Google Scholar
9. Wolfenden, R. and Snider, M. J., Acc. Chem. Res. 34, 938945 (2001).Google Scholar
10. Schroeder, G. K., Lad, C., Wyman, P., Williams, N. H., and Wolfenden, R., Proc. Natl. Acad. Sci. USA 103, 40524055 (2006).Google Scholar
11. Ramshaw, J. A. M., Shah, N. K., and Brodsky, B., J. Struct. Biol. 122, 8691 (1998).Google Scholar
12. Birk, D. E. and Bruckner, P., Top. Curr. Chem. 247, 185205 (2005).Google Scholar
13. Eyre, D. R. and Wu, J.-J., Top. Curr. Chem. 247, 207229 (2005).Google Scholar
14. Prockop, D. J. and Kivirikko, K. I., Annu. Rev. Biochem. 64, 403434 (1995).Google Scholar
15. Prockop, D. J., Matrix Biol. 16, 519528 (1998).Google Scholar
16. Prockop, D. J., Biochem. Soc. Trans. 27, 1531 (1999).Google Scholar
17. Byers, P. H., Clin. Genet. 58, 270279 (2000).Google Scholar
18. Bella, J., Eaton, M., Brodsky, B., and Berman, H. M., Science 266, 7581 (1994).Google Scholar
19. Collagen Biomaterials, edited by Werkmeister, J. A. and Ramshaw, J. A. M. (Elsevier Science, Barking, Essex, England, 1992).Google Scholar
20. Ramshaw, J. A. M., Werkmeister, J. A., and Glattauer, V., Biotechnol. Genet. Eng. Rev. 13, 335382 (1995).Google Scholar
21. Lynn, A. K., Yannas, I. V., and Bonfield, W., J. Biomed. Mater. Res. B Appl. Biomater. 71, 343354 (2004).Google Scholar
22. Johnson, G., Jenkins, M., McClean, K. M., Griesser, H. J., Kwak, J., Goodman, M., and Steele, J. G., J. Biomed. Mater. Res. 51, 612624 (2000).Google Scholar
23. Prolyl Hydroxylase, Protein Disulfide Isomerase, and Other Structurally Related Proteins, edited by Guzman, N. A. (Marcel Dekker, New York, 1998).Google Scholar
24. Myllyharju, J., Matrix Biol. 22, 1524 (2003).Google Scholar
25. Koide, T. and Nagata, K., Top. Curr. Chem. 247, 85114 (2005).Google Scholar
26. McCaldon, P. and Argos, P., Proteins: Struct. Funct. Genet. 4, 99122 (1988).Google Scholar
27. Bulleid, N. J., Wilson, R., and Lees, J. F., Biochem. J. 317, 195202 (1996).Google Scholar
28. Walmsley, A. R., Batten, M. R., Lad, U., and Bulleid, N. J., J. Biol. Chem. 274, 1488414892 (1999).Google Scholar
29. Snellman, A., Keranen, M.-R., Hagg, P. O., Lamberg, A., Hiltunen, J. K., Kivirikko, K. I., and Pihlajaniemi, T., J. Biol. Chem. 275, 89368944 (2000).Google Scholar
30. Byers, P. H., Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 151158 (2001).Google Scholar
31. Friedman, L., Higgin, J. J., Moulder, G., Barstead, R., Raines, R. T., and Kimble, J., Proc. Natl. Acad. Sci. USA 97, 47364741 (2000).Google Scholar
32. Fields, G. B. and Prockop, D. J., Biopolymers 40, 345357 (1996).Google Scholar
33. Jenkins, C. L. and Raines, R. T., Nat. Prod. Rep. 19, 4959 (2002).Google Scholar
34. Engel, J. and Bächinger, H. P., Top. Curr. Chem. 247, 733 (2005).Google Scholar
35. Berg, R. A. and Prockop, D. J., Biochem. Biophys. Res. Comm. 52, 115120 (1973).Google Scholar
36. Bella, J., Brodsky, B., and Berman, H. M., Structure 3, 893906 (1995).Google Scholar
37. Holmgren, S. K., Taylor, K. M., Bretscher, L. E., and Raines, R. T., Nature 392, 666667 (1998).Google Scholar
38. Holmgren, S. K., Bretscher, L. E., Taylor, K. M., and Raines, R. T., Chem. Biol. 6, 6370 (1999).Google Scholar
39. Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L., and Raines, R. T., J. Am. Chem. Soc. 123, 777778 (2001).Google Scholar
40. DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T., and Markley, J. L., J. Am. Chem. Soc. 124, 24972505 (2002).Google Scholar
41. Inouye, K., Sakakibara, S., and Prockop, D. J., Biochim. Biophys. Acta 420, 133141 (1976).Google Scholar
42. Hodges, J. A. and Raines, R. T., J. Am. Chem. Soc. 125, 92629263 (2003).Google Scholar
43. Hinderaker, M. P. and Raines, R. T., Protein Sci. 12, 11881194 (2003).Google Scholar
44. Bürgi, H. B., Dunitz, J. D., and Shefter, E., J. Am. Chem. Soc. 95, 50655067 (1973).Google Scholar
45. Bürgi, H. B., Dunitz, J. D., Lehn, J. M., and Wipff, G., Tetrahedron 30, 15631572 (1974).Google Scholar
46. Bürgi, H. B., Lehn, J. M., and Wipff, G., J. Am. Chem. Soc. 96, 19651966 (1974).Google Scholar
47. Haduthambi, D. and Zondlo, N. J., J. Am. Chem. Soc. 128, 1243012431 (2006).Google Scholar
48. Kümin, M., Sonntag, L. S., and Wennemers, H., J. Am. Chem. Soc. 129, 466467 (2007).Google Scholar
49. Gorske, B. C., Bastian, B. L., Geske, G. D., and Blackwell, H. E., J. Am. Chem. Soc. 129, 89288929 (2007).Google Scholar
50. Panasik, N. Jr., Eberhardt, E. S., Edison, A. S., Powell, D. R., and Raines, R. T., Int. J. Pept. Protein Res. 44, 262269 (1994).Google Scholar
51. Jenkins, C. L., McCloskey, A. I., Guzei, I. A., Eberhardt, E. S., and Raines, R. T., Peptide Sci. 80, 18 (2005).Google Scholar
52. Jenkins, C. L., Lin, G., Duo, J., Rapolu, D., Guzei, I. A., Raines, R. T., and Krow, G. R., J. Org. Chem. 69, 85658573 (2004).Google Scholar
53. Shoulders, M. D., Hodges, J. A., and Raines, R. T., J. Am. Chem. Soc. 128, 81128113 (2006).Google Scholar
54. Hodges, J. A. and Raines, R. T., J. Am. Chem. Soc. 127, 1592315932 (2005).Google Scholar
55. Kotch, F. W. and Raines, R. T., Proc. Natl. Acad. Sci. USA 103, 30283033 (2006).Google Scholar
56. Raines, R. T., Protein Sci. 15, 12191225 (2006).Google Scholar