Published online by Cambridge University Press: 01 February 2011
Cubic InGaN/GaN double heterostructures and multi-quantum-wells have been grown by Molecular Beam Epitaxy on cubic 3C-SiC. We find that the room temperature photoluminescence spectra of our samples has two emission peaks at 2.4 eV and 2.6 e V, respectively. The intensity of the 2.6 eV decreases and that of the 2.4 eV peak increases when the In mol ratio is varied between X = 0.04 and 0.16. However, for all samples the peak energy is far below the bandgap energy measured by photoluminescence excitation spectra, revealing a large Stokes-like shift of the InGaN emission. The temperature variation of the photoluminescence intensity yields an activation energy of 21 meV of the 2.6 eV emission and 67 meV of the 2.4 eV emission, respectively. The room temperature photoluminescence of fully strained multi quantum wells (x = 0.16) is a single line with a peak wavelength at about 510 nm.