Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T07:12:42.556Z Has data issue: false hasContentIssue false

Strong Liquid Behavior of Zr-Ti-Cu-Ni-Be Bulk Metallic Glass Forming Alloys

Published online by Cambridge University Press:  10 February 2011

Ralf Busch
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Andreas Masuhr
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Eric Bakke
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
William L. Johnson
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The viscosities of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 and the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass forming liquids was determined from the melting point down to the glass transition in the entire temperature range of the supercooled liquid. The temperature dependence of the viscosity in the supercooled liquid obeys the Vogel-Fulcher-Tammann (VFT) relation. The fragility index D is about 20 for both alloys and the ratio between glass transition temperature and VFT temperature is found to be 1.5. A comparison with other glass forming systems shows that these bulk metallic glass formers are strong liquids comparable to sodium silicate glass. Furthermore, they are the strongest among metallic glass forming liquids. This behavior is a main contributing factor to the glass forming ability since it implicates a higher viscosity from the melting point down to the glass transition compared to other metallic liquids. Thus, the kinetics in the supercooled liquid is sluggish and yields a low critical cooling rate for glass formation. The relaxation behavior in the glass transition region of the alloys is consistent with their strong glassy nature as reflected by a stretching exponent that is close to 0.8. The microscopic origin of the strong liquid behavior of bulk metallic glass formers is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klement, W., Willens, R., and Duwez, P., Nature 187, 869 (1960).Google Scholar
2. Duwez, P., Trans. ASM 60, 607 (1967).Google Scholar
3. Drehman, A.J. and Greer, A.L., Acta Metall. 32, 323 (1984).Google Scholar
4. Kui, H.W., Greer, A.L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).Google Scholar
5. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM 31, 425 (1991)Google Scholar
6. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans. JIM 32, 1005 (1991).Google Scholar
7. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
8. Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., Rhim, W. K., Appl. Phys Lett. 65, 2136 (1994).Google Scholar
9. Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L., Scipta Metall. Mater. 30, 429 (1994).Google Scholar
10. Bruck, H.A., Rosakis, A.J., and Johnson, W.L., J. Mater. Res. 11, 503 (1996).Google Scholar
Busch, U.R., Kim, Y.J., and Johnson, W.L., J. Appl. Phys. 77, 4039 (1995).Google Scholar
12. Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T. A., and Macht, M. P., Phys. Rev. Lett. 75, 2364 (1995).Google Scholar
13. Busch, R., Kim, Y.J., Johnson, W.L., Rulison, A.J., Rhim, W. K., and Isheim, D., Appl. Phys Lett. 66, 3111 (1995).Google Scholar
14. Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., Rhim, W. K., Appl. Phys Lett. 68, 1057 (1996).Google Scholar
15. Angeli, C.A., Science 267, 1924 (1995).Google Scholar
16. Hagy, H.E., J. Amer. Ceram. Soc. 46, 93 (1963).Google Scholar
17. Diennes, G.J. and Klemm, H.F., J. Appl. Phys. 17, 458 (1946).Google Scholar
18. Stephan, M.J., Akad. Wiss. Wien. Math.-Natur Klasse Abt. 2. 69, 713 (1984).Google Scholar
19. Bakke, E., Busch, R., and Johnson, W.L., Appl. Phys. Lett. 67, 3260 (1995).Google Scholar
20. Washbum, E.W., Phys. Rev. 17, 273 (1921).Google Scholar
21. Krieger, I.M. and Maron, S.H., J Appl. Phys. 23, 147 (1952).Google Scholar
22. Nemilov, S.V., Glass Physics and Chemistry 21, 91 (1995).Google Scholar
23. Böhmer, R., Ngai, K.L., Angeli, C.A., and Plazek, D.J., J. Chem. Phys. 99, 4201 (1993).Google Scholar
24. Rambousky, R., Moske, M., Samwer, K., Z. Phys. B 99, 387 (1996).Google Scholar
25. Chen, H.S., J. Non-Crystalline Solids 27, 257 (1978).Google Scholar
26. Chen, H.S. and Turnbull, D., J. Chem. Phys. 48, 2560 (1968).Google Scholar
27. Miller, M.K., Russell, K.F., Busch, R., and Johnson, W.L., J. de Physique (in press).Google Scholar
28. Busch, R., Schneider, S., Peker, A., and Johnson, W.L., Appl. Phys. Lett. 67, 1544 (1995).Google Scholar
29. Schneider, S., Thiyagarajan, P., and Johnson, W.L., Appl. Phys. Lett. 68, 493 (1996).Google Scholar
30. Busch, R., Bakke, E., and Johnson, W.L., Proceedings of the Intl. Symp. on Metastable and Nanocrystalline Materials 1996, Rome, Italy, Mater. Sci. Forum, (1996), in press.Google Scholar