Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:34:44.630Z Has data issue: false hasContentIssue false

Strong Influence of Tb Concentration on Domain Structure and Kerr Effect of TbxFe1−x Thin Films

Published online by Cambridge University Press:  03 September 2012

V. Florescu
Affiliation:
Rice University, Department of Physics and Rice Quantum Institute, Houston, Texas 77251 – 1892.
C. Rau
Affiliation:
Rice University, Department of Physics and Rice Quantum Institute, Houston, Texas 77251 – 1892.
N. J. Zheng
Affiliation:
Rice University, Department of Physics and Rice Quantum Institute, Houston, Texas 77251 – 1892.
Get access

Abstract

Amorphous TbFe films with perpendicular magnetic anisotropy are attracting wide attention as promising candidates for erasable high - density Magneto - optical recording and thermomagnetic printing. TbxFe1−x thin films with 0 ≤ × ≤ 0.37 are deposited on glass substrates using r.f. sputtering. The Magnetic remanent domain structures are studied at room temperature using the longitudinal and polar Kerr effect. Samples with 0 ≤ × ≤ 0.23 exhibit magnetic in-plane anisotropy, while samples with 0.26 ≤ × ≤ 0.37 possess uniaxial anisotropy with easy axis perpendicular to the film plane. The remanent domain structures depend strongly on Tb content. High remanence and high coercivity are found for samples with 0.27 ≤ × ≤ 0.34 which is confirmed by additional vibrating sample Magnetometer (VSM) Measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hansen, P. and Heitmann, H., IEEE Trans. Magn. MAG–25, 4390 (1989).Google Scholar
2. Imamura, N., Tanaka, S., Tanaka, F. and Nagao, Y., IEEE Trans. Magn. MAG–21, 1607 (1985)Google Scholar
3. Komori, M., Numata, T., Tsutsumi, K., Inokuchi, S. and Sakurai, Y., IEEE Trans. Magn MAG-20, (1984).Google Scholar
4. Higashi, J., Numata, T., Inokuchi, S. and Sakuray, Y., Japan J. Appl. Phys., 26, 1262 (1987).Google Scholar
5. Eltgen, J. J. and Maguenet, J. G., IEEE Trans. Magn. MAG–16, 961 (1980).Google Scholar
6. Lin, C. J., Suit, J. C. and Geiss, R. H., J. Appl. Phys. 63, 3835 (1988).Google Scholar
7. Takeno, Y., Suwabe, M., Sakurai, T. and Goto, K., Japan J. Appl. Phys. 25, L 657, (1986).Google Scholar
8. Florescu, V., Tamimi, Zaki AL -, Serbanescu, M. D., Manaila, R. and Grant, W. A., IEEE Trans. Magn. MAG–24, 1734 (1988).Google Scholar
9. Florescu, V., Serbanescu, M. D., Manaila, R., Grant, W. A., J. Magn. Mag. Mat., 92, 137 (1990).Google Scholar
10. Schmidt, F., Rave, W. and Hubert, A., IEEE Trans. Magn. MAG–21, 1596 (1985).Google Scholar
11. Cullity, B. D.. Introduction to magnetic materials (Addison - Wesley Publishing Comp. Inc., 1972) p. 436.Google Scholar
12. Hansen, P., Clausen, C., Much, G., Rosenkranz, M. and Witter, K., J. Appl. Phys. 66, 756 (1989).Google Scholar
13. Hansen, P., J. Appl. Phys. 63, 2364 (1988).Google Scholar