Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T05:37:39.773Z Has data issue: false hasContentIssue false

Stressing Lipid Membranes: Effects of Polymers on Membrane Structural Integrity

Published online by Cambridge University Press:  02 January 2013

Jia-Yu Wang
Affiliation:
Department of Chemistry, Institute for Biophysical Dynamics & James Franck Institute, The University of Chicago, Illinois 60637, U.S.A
Chi-Yuan Cheng
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, U.S.A.
Ravinath. Kausik
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, U.S.A. Schlumberger-Doll Research, Cambridge, MA 02139, U.S.A.
Jaemin Chin
Affiliation:
Department of Chemistry, Institute for Biophysical Dynamics & James Franck Institute, The University of Chicago, Illinois 60637, U.S.A
Songi. Han
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, U.S.A.
Jeremy D. Marks
Affiliation:
Department of Pediatrics, The University of Chicago, Illinois 60637, U.S.A.
Ka Yee C. Lee*
Affiliation:
Department of Chemistry, Institute for Biophysical Dynamics & James Franck Institute, The University of Chicago, Illinois 60637, U.S.A
Get access

Abstract

Disruption of cell membranes triggers rapid metabolic energy exhaustion, then acute cellular necrosis. Cell membrane dysfunction due to loss of structure integrity is the pathology of tissue death in trauma, muscular dystrophies, reperfusion injuries and common diseases. It is now established that certain PEG-based biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and PEG, are effective in sealing of injured cell membranes, and thus can prevent acute necrosis if delivered within a few hours after injury. Despite these broad applications of PEG-based polymers for human health, the fundamental mechanisms of how PEG-based polymers interact with cell membranes are still under debate. Here, the effects of PEG-based biocompatible polymers on phospholipid membrane integrity under external stimuli (osmotic stress and oxidative stress) were explored using giant unilamellar vesicles (GUVs) as model cell membranes. Through fluorescence leakage assays and time-lapse fluorescence microscopy, we directly observed that the surface-adsorbed P188 can efficiently inhibits the loss of structural integrity of giant unilamellar vesicles (GUVs) under hypo-osmotic stress. We propose that the adsorption of polymers on the membrane surface is responsible for the cell membrane resealing process, while the insertion of the hydrophobic portion of the polymers increases membrane permeability. To elucidate the mechanism by which hydrophilic polymers help restore membrane integrity while their hydrophobic counterparts disrupt it, 1H Overhauser Dynamic Nuclear Polarization (ODNP)-NMR spectroscopy, a newly developed NMR technique that provides unprecedented resolution for differentiating weak surface adsorption versus translocation of polymers to membranes, was employed to sensitively detect polymer-lipid membrane interactions through the modulation of local hydration dynamics in lipid membranes. Our study shows that P188—the most hydrophilic poloxamer known as a membrane sealant—weakly adsorbs onto the membrane surface, yet effectively retards membrane hydration dynamics. Contrarily, P181—the most hydrophobic poloxamer known as a membrane permeabilizer—initially penetrates past lipid headgroups and enhances intrabilayer water diffusivity. Consequently, our results illustrate that the relative hydrophilic/hydrophobic ratio of the polymer dictates its functions. These findings gleaned from local hydration dynamics are well supported by our thermodynamics and fluorescence data.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chang, D. C., Reese, T. S., Biophys. J. 58, 1 (1990).CrossRefGoogle Scholar
Steinhardt, R. A., Ann. N.Y. Acad. Sci. 1066, 152 (2005).CrossRefGoogle Scholar
Lee, R. C., Kolodney, M. S., Plast. Reconstr. Surg. 80, 672 (1987).CrossRefGoogle Scholar
Shi, R., Luo, J., Peasley, M., Neoroscience 115, 337 (2002).CrossRefGoogle Scholar
Mina, E. W., Lasagna-Reeves, C., Glabe, C. G., Kayed, R. J., Mol. Biol. 391, 577 (2009).CrossRefGoogle Scholar
Yasuda, S., Townsend, D., Michele, D. E., Favre, E. G., Day, S. M., Metzger, J. M. D., Nature 436, 1025 (2005).CrossRefGoogle Scholar
Greenebaum, B., Blossfield, K., Hannig, J., Carrillo, C. S., Beckett, M. A., Weichselbaum, R. R., Lee, R. C., Burns 30, 539 (2004).CrossRefGoogle Scholar
Miller, D. W., Batrakova, E. V., Kabanov, A. V., Pharm. Res. 16, 396 (1999).CrossRefGoogle Scholar
Wang, J.-Y., Cheng, C.-Y., Han, S., Marks, J. D., Lee, K. Y. C., Biomacromolecules, 13, 2616 (2012).CrossRefGoogle Scholar
Cheng, C.-Y., Wang, J.-Y., Kausik, R., Lee, K. Y. C., Han, S., J. Magn. Reson. 215, 115 (2012).CrossRefGoogle Scholar
Cheng, C.-Y., Wang, J.-Y., Kausik, R., Lee, K. Y. C., Han, S., Biomacromolecules, 13, 2624 (2012).CrossRefGoogle Scholar
Wang, J.-Y., Chin, J., Marks, J. D., Lee, K. Y. C., Langmuir, 26, 12953 (2010).CrossRefGoogle ScholarPubMed
Heerklotz, H., Seelig, J., Biochim. Biophys. Acta 1508, 69 (2000).CrossRefGoogle Scholar
Gabriel, G. J., Pool, J. G., Som, A., Dabkowski, J. M., Coughlin, E. B., Muthukumar, M., Tew, G. N., Langmuir 24, 12480 (2008).CrossRefGoogle Scholar
Wu, G., Lee, K. Y. C., J. Phys. Chem. B 113, 15522 (2009).CrossRefGoogle Scholar
Arnold, K., Zschoernig, O., Barthel, D., Herold, W., Biochim. Biophys. Acta 1022, 303 (1990).CrossRefGoogle Scholar
Evans, E., Deedham, D., Macromolecules 21, 1822 (1988).CrossRefGoogle Scholar
Lehtonen, J. Y., Kinnumen, P. K., Biophys. J., 68, 525 (1995).CrossRefGoogle Scholar
Heerklotz, H. H., Binder, H., Epand, R. M., Biophys. J. 76, 2606 (1999).CrossRefGoogle Scholar
Olsher, M., Yoon, S.-I., Chong, P. L.-G., Biochemistry 44, 2080 (2005).10.1021/bi047710sCrossRefGoogle Scholar
Faria, A., Calhau, C., Freitas, V. D., Mateus, N. J., Agrc. Food. Chem. 54, 2392 (2006).10.1021/jf0526487CrossRefGoogle Scholar
Halliwell, B., Gutteridge, J. M. C., Methods in Enzymology, 186, 1 (Academic Press, 1990).Google Scholar
Zweier, J. L., Kuppusamy, P., Lutty, G. A., Proc. Nat. Acad. Sci. USA 85, 4046 (1988).CrossRefGoogle Scholar
Borst, J. W., Visser, N. V., Kouptsova, O., Visser, A., J. Biochim. Biophys. Acta 1487, 61 (2000).CrossRefGoogle Scholar
Hannig, J., Zhang, D., Canaday, D. J., Beckett, M. A., Astumian, R. D., Weichselbaum, R. R., Lee, R. C., Radiat. Res 154, 171 (2000).CrossRefGoogle Scholar
Frim, D. M., Wright, D. A., Curry, D. J., Cromie, W., Lee, R., Kang, U. J., Cognitive Neuroscience and Neuropsychology 15, 171 (2004).Google Scholar
Riske, K. A., Sudbrack, T. P., Archilha, N. L., Uchoa, A. F., Schroder, A. P., Marques, C. M., Baptista, M.S., Itri, R., Biophys. J. 97, 1362 (2009).10.1016/j.bpj.2009.06.023CrossRefGoogle Scholar
Borgens, R. B., Shi, R., Bohnert, D., J. exp. Bio. 205, 1 (2002).Google Scholar
Palmer, J. S., Cromie, W. J., Lee, R. C., J. urology 159, 2136 (1998).CrossRefGoogle Scholar
Yin, H., Xu, L. N., Porter, A., Chem. Rev. 111, 5944 (2011).CrossRefGoogle Scholar
Ball, P., Chem. Rev. 108, 74 (2008).CrossRefGoogle Scholar
Armstrong, B. D., Han, S., J. Am. Chem. Soc. 131, 4641 (2009).10.1021/ja809259qCrossRefGoogle Scholar
Zhang, L. Y., Yang, Y., Kao, Y. T., Wang, L. J., Zhong, D. P. J., J. Am. Chem. Soc. 131, 10677 (2009).CrossRefGoogle Scholar
Kausik, R., Han, S., Phys. Chem. Chem. Phys. 13, 7732 (2011).CrossRefGoogle Scholar