Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:30:29.344Z Has data issue: false hasContentIssue false

Stresses in Ferroelectric Thin Films

Published online by Cambridge University Press:  16 February 2011

Seshu B. Desu*
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
Get access

Abstract

The stresses in rf sputtered BaTiO3 thin films, deposited on both Si and sapphire single crystals, were studied. From the measured total film stress values, both the intrinsic stresses in the film and the elastic coefficients [Ef/(1–vf)] of the film were obtained. BaTiO3 films can be obtained in any stress state (tensile, stress free or compressive) by varying the deposition temperature, deposition pressure, and substrate. At lower temperatures and pressures compressive intrinsic stresses were observed whereas, at high deposition temperatures and pressures intrinsic stresses were tensile in nature. The [Ef/(1–vf)] value approached the single crystal value for films deposited at low pressures and decreased significantly with increasing deposition pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Mukhortov, V.M., et al., Sov.Phys.Tech.Phys., 33, 867 (1988).Google Scholar
2) McClure, D.J. and Crowe, J.R., J.Vac.Sci.Technol., 16, 311 (1979).Google Scholar
3) Dharmadhikari, V.S. and Grannemann, W.W., J.Appl.Phys., 53, 8988 (1982).Google Scholar
4) Panitz, J.K.G. and Hu, C.C., Ferroelectrics, 47, 161 (1980).Google Scholar
5) Yeh, Y.C. and Tseng, T.Y., J.Mat.Sci.Lett., 7, 766 (1988) 766.Google Scholar
6) Tomashpolski, Yu.Ya., Ferroelectrics, 7, 253 (1974).Google Scholar
7) Iijima, Y., Jpn.J.Appl.Phys, 24,17 (1985).Google Scholar
8) Mukhortov, V.M., et al., Phys.Status.Solidi., A 78, 253 (1983).Google Scholar
9) Nagatomo, T. and Omoto, O., Jpn.J.Appl.Phys., 26, 11 (1987).Google Scholar
10) Iijima, K., et al., Appl.Phys.Lett., 56, 527 (1990).Google Scholar
11) Piralova, A.T., et al., Sov.Phys.Crystallogr., 31, 694 (1986).Google Scholar
12) Vendik, O.G., et al., Sov.Phys.Tech.Phys., 29, 455 (1984).Google Scholar
13) T.Pan, J. and Blech, I., J.Appl.Phys., 55, 8 (1984).Google Scholar
14) Shebanov, L.A., Phys.Status.Solidi., A 65, 321 (1981).Google Scholar
15) Desu, S.B., unpublished results.Google Scholar
16) Klokholm, E. and Berry, B.S., J.Electrochem.Soc., 115, 823 (1968).Google Scholar
17) Hoffman, D.W. and Thornton, J.a., Thin Solid Films, 40, 355 (1977).Google Scholar
18) Cuomo, J.J. et al., J.Vac.Sci.Technol., 20, 349 (1982).Google Scholar
19) Hoffman, D.W. and Gaerttner, M.R., J.Vac.Sci.Technol., 17, 425 (1980).Google Scholar
20) Movchan, B.A. and Demchishin, A.V., Phys, Met.Metallogr., 28, 83 (1969).Google Scholar
21) Union Carbide Crystal Products Technical Bulletin.Google Scholar
22) Suzuki, T., et al., J.Electrochem.Soc., 124, 1778 (1977).Google Scholar