Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:47:12.070Z Has data issue: false hasContentIssue false

Stress relaxation during two-dimensional pseudomorphic epitaxial growth of metals

Published online by Cambridge University Press:  17 March 2011

Stéphane Andrieu
Affiliation:
Laboratoire de Physique des Matériaux, CNRS / Univ H. Poincaré, F-54506, Nancy, France CRMCC – CNRS, campus de Luminy, Univ. Aix-Marseille II-III, F-13288 Marseille, France
Pascal Turban
Affiliation:
Laboratoire de Physique des Matériaux, CNRS / Univ H. Poincaré, F-54506, Nancy, France CRMCC – CNRS, campus de Luminy, Univ. Aix-Marseille II-III, F-13288 Marseille, France
Laurent Lapena
Affiliation:
Laboratoire de Physique des Matériaux, CNRS / Univ H. Poincaré, F-54506, Nancy, France CRMCC – CNRS, campus de Luminy, Univ. Aix-Marseille II-III, F-13288 Marseille, France
Pierre Muller
Affiliation:
Laboratoire de Physique des Matériaux, CNRS / Univ H. Poincaré, F-54506, Nancy, France CRMCC – CNRS, campus de Luminy, Univ. Aix-Marseille II-III, F-13288 Marseille, France
Get access

Abstract

The analysis of RHEED diffraction peaks during two-dimensional (2D) pseudomorphic epitaxial growth leads to the well known RHEED oscillations but also to diffraction peak width and in-plane lattice spacing oscillations. These behaviors are evidenced in several metallic A/B systems in this paper. As in-plane lattice spacing oscillations are assumed to be due to elastic relaxation at the edge of the 2D Islands, we try to correlate the amplitude of the detected effect with the misfit. The width oscillations are assumed to be due to the scattering coming from islands. We actually show that the full width at half maximum (FWHM) at half coverage allows us to get a correct estimation of the nucleation density. We thus show experimentally that the in-plane lattice spacing oscillations amplitude depends on the nucleation density determined using FWHM measurements. Finally, a theoretical justification allows us to show that this amplitude also depends on the Young modulus ratio of both B and A layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Massies, J., Grandjean, N., Phys. Rev. Lett., 71, 1411 (1993)Google Scholar
2. Hartmann, J. M., Arnoult, A., Carbonell, L., Etgens, V.H., Tatarenko, S., Phys. Rev. B57, 15372 (1998)Google Scholar
3. Fassbender, J., May, U., Schirmer, B., Jungblut, R.M., Hillerbrands, B., Güuntherodt, G., Phys. Rev. Lett., 75, 4476 (1995),Google Scholar
4. Turban, P., Hennet, L., Andrieu, S., Surf. Sci., 446, 241 (2000)Google Scholar
5. Koida, T., Lipmaa, M., Komiyama, D., Koinuma, H., Kawasaki, M., Proc.5th symp. on Atomic-scale Surface and Interface, March 1-2, Tokyo, (2001), 327 Google Scholar
6. Kern, R., Muller, P., Surf. Sci., 392, 103 (1997)Google Scholar
7. Turban, P., Dulot, F., Kierren, B., Andrieu, S., Appl. Surf. Sci., 177, 282 (2001)Google Scholar
8.See for instance Henzler, M., Applications of Surf. Sci., 11/12, 450, (1982)Google Scholar
9.See for instance Robach, O., Renaud, G., Barbier, A., Phys. Rev. B60, 5858 (1999)Google Scholar
10. Guinier, A., X-Ray diffraction in Crystals, Imperfect Crystal, and Amorphous Bodies, Freeman, San Francisco, (1963).Google Scholar
11. Stroscio, J.A., Pierce, D.T., Dragoset, R.A., Phys. Rev. Lett., 70, 3615 (1993) F. Dulot, PhD thesis, University of Nancy, France, (2000)Google Scholar
12. Muller, P., Turban, P., Andrieu, S., Lapena, L., Surf. Sci., 488, 52 (2001)Google Scholar
13. Horio, Y., Ichimiya, A., Surf. Sci., 298, 261 (1993)Google Scholar