Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:12:59.496Z Has data issue: false hasContentIssue false

Stress Distributions in Free Standing Quantum Well Dots and Wires

Published online by Cambridge University Press:  15 February 2011

N. A. Gippius
Affiliation:
General Physics Institute, RAS, Vavilova Street 38, Moscow 117333, Russia, [email protected]
S. G. Tikhodeev
Affiliation:
General Physics Institute, RAS, Vavilova Street 38, Moscow 117333, Russia, [email protected]
R. Steffen
Affiliation:
Technische Physik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
T. Koch
Affiliation:
Technische Physik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
A. Forchel
Affiliation:
Technische Physik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Get access

Abstract

We present a theoretical model for calculation of stress distributions in semiconductor nanostructures such as lattice-mismatched InGaAs/GaAs quantum well wires and dots. The model is based on a linear elastic deformation approximation, and assumes dislocation-free interfaces with an additional condition of continuous interatomic distance on the interfaces. The distributions of stress tensor components and the resulting effective potentials for electronhole pairs are calculated. The comparison of our model with the experimental data on the exciton spectra in free standing strained InGaAs/GaAs quantum well wires is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reithmaier, J. P., Höger, R., Riechert, H., Heberle, A., Abstreiter, G., and Weimann, G., Appl. Phys. Lett. 56, 536 (1990).Google Scholar
2. Kash, K., Bhat, R., Mahoney, Derek D., Lin, P. S. D., Scherer, A., Worlock, J. M., Graag, B. P. Van der, Koza, M., and Grabbe, P., Appl. Phys. Lett. 55, 681 (1989).Google Scholar
3. Kash, K., Graag, B. P. Van der, Mahoney, Derek D., Gozdz, A. S., Florez, L. T., and Harbison, J. P., Phys. Rev. Lett. 67, 681 (1989).Google Scholar
4. Kümmel, T., Diplomarbeit, Würzburg (1995).Google Scholar
5. Landau, L. D. and Lifshitz, E. M., Theoretical Physics, Part VII - Theory of Elasticity, Nauka, Moscow (1987).Google Scholar
6. Pikus, G. E. and Bir, G. L., Fiz. Tverd. Tela 1, 1642 (1959) [Sov. Phys. Solid State, 1, 1502 (1960)].Google Scholar
7. Landolt-Börnstein, , in Numerical data and Functional Relationships in Science and Technology, New Series, III/17a, edited by Madelung, O. (Springer, Berlin, 1982).Google Scholar
8. Steffen, R., Faller, F., and Forchel, A. J. Vac. Sci. Technol. B 12, 3653 (1994).Google Scholar