No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
The fabrication of ultrathin (25nm) 2-dimensional free-standing arrays of tetrahedral amorphous Carbon (ta-C) microbridges is reported for the first time. The ta-C films were deposited by a Filtered Cathodic Vacuum Arc (FCVA) deposition system where the sp3 content in the film was measured to be in excess of 90% by high resolution XPS. Continuous arrays of free standing taC bridges whose length/width ratios ranged from 1:1 to 12:1 were successfully fabricated while maintaining the same thickness. Due to the naturally high compressive stress of ta-C films, the buckling of films was perpendicular to the length of the beam. The displacement of curvature obtained was in good agreement with FEM simulation results. Moreover, the curvature or arch of these ultrathin films, coupled with a high Young's modulus (750GPa) and Hardness (60GPa), meant they could withstand a vertical force in excess of 8000μN without breaking.