Published online by Cambridge University Press: 27 March 2015
Stray current arising from direct current electrified traction systems and then circulating in reinforced concrete near railways is known to induce corrosion on embedded steel reinforcement. The present paper will review the principles of stray current induced corrosion in reinforced concrete, which is relatively uncommon but with significant impact in practice.
Within one of the approaches to ease this kind of specific corrosion in reinforced concrete, carbon fibres (CF) can be added to enhance the conductivity of concrete, subsequently reduce the stray current density and/or direct the stray current dissipation in a desired manner. The side effects (such as increasing the bulk matrix porosity) caused by CF, which can in turn reduce the general corrosion resistance of reinforced concrete, will be compensated by adding silica fume (SF). The combination of CF and SF can be a potentially feasible and original application to reduce the risk of stray current induced corrosion in reinforced concrete, without obvious negative side effects.