Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:55:20.695Z Has data issue: false hasContentIssue false

Stranski-Krastanov Growth of Ni on Si(111) at Room Temperature

Published online by Cambridge University Press:  25 February 2011

J. R. Butler
Affiliation:
Physics Department, Arizona State University, Tempe, Arizona 85287
P. A. Bennett
Affiliation:
Physics Department, Arizona State University, Tempe, Arizona 85287
Get access

Abstract

We introduce quantitative Auger lineshape analysis methods to study the room temperature reaction of nickel on Si(111). We show that coexisting phases may be separated by numerically fitting the composite lineshapes using a linear combination of single phase “fingerprint” spectra, obtained by scraping bulk compounds in situ. The reaction proceeds in three stages. For nickel coverage below 1 Å, the growth is layerwise, forming NiSi2. For nickel coverage from 3 to 12 Å, islands of Ni2Si are formed. For nickel coverage above 12 Å, islands of pure nickel are formed. The overlayer reactions appear to be a kinetically limited form of Stranski-Krastanov growth, with multiple compound formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, R. T., Gibson, J. M., Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).Google Scholar
2. d'Anterroches, C., Yakupoglu, H. N., Lin, T. L., Fathauer, R. W., Grunthaner, P. J., Appl. Phys. Lett. 52, 434–6 (1988).Google Scholar
3. Tung, R. T., Schrey, F., Appl. Phys. Lett. 55, 256258 (1989).Google Scholar
4. Tung, R. T., Schrey, F., Appl. Phys. Lett. 54, 852854 (1989).Google Scholar
5. Comin, F., Rowe, J. E., Citrin, P. H., Phys. Rev. Lett. 51, 2402 (1983).Google Scholar
6. Porter, T. L., Chang, C. S., Knipping, U., Tsong, I. S. T., J. Vac. Sci. Technol. A6, 2034–6 (1988).Google Scholar
7. Gibson, J. M., Batstone, J. L., Surf. Sci. 208, 317–50 (1989).Google Scholar
8. Hinkel, V., Sorba, L., Haak, H., Horn, K., Braun, W., Appl. Phys. Lett. 50, 12571-9 (1987).Google Scholar
9. vanLoenen, E. J., vanderVeen, F., LeGoues, F. K., Surf. Sci. 152, 116 (1985).Google Scholar
10. Fischer, A. E. M. J., Maree, P. M. J., vanderVeen, F., Appl. Surf. Sci. 27, 143–50 (1986).Google Scholar
11. Bennett, P. A., Butler, J. R., Tong, X., in Mat. Res. Soc. ((in press), 1989).Google Scholar
12. Madden, H. H., in Surf. Sci. 1983), pp. 80100.Google Scholar
13. Rubloff, G. W., Ho, P. S., Thin Solid Films 93, 2140 (1982).Google Scholar
14. Calandra, C., Bisi, O., Ottaviani, G., Surf. Sci. Rep. 4, 271364 (1985).Google Scholar
15. DelPennino, U., Sassaroli, P., Valeri, S., Bertoni, C. M., Bisi, O., Calandra, C., J. Phys. C 16, 6309–19 (1983).Google Scholar
16. Roth, J. A., Crowell, C. R., Jour. Vac. Sci. Technol. 15, 13171324 (1978).Google Scholar
17. Bennett, P. A., Fuggle, J. C., Hillebrecht, F. U., Lenselink, A., Sawatzky, G. A., Phys. Rev. B 27, 2194–209 (1983).Google Scholar
18. Seah, M. P., in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. Briggs, D., Seah, M. P., Eds. (J. Wiley, 1983), pp. 181216.Google Scholar
19. Hall, P. M., Morabito, J. M., Conley, D. K., Surf. Sci. 62, 120 (1977).Google Scholar
20. Ho, P., Schmid, P. E., Foil, H., Phys. Rev. Lett. 46, 782785 (1981).Google Scholar