Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:28:10.686Z Has data issue: false hasContentIssue false

Strain-Related Excitonic In-Plane Optical Anisotropy in (100) InGaAs/InAlAs/InP MQW

Published online by Cambridge University Press:  03 September 2012

A. Dimoulas
Affiliation:
University of Maryland, Dptm. of Materials & Nuclear Engineering, College Park, MD 20742.
R. Tober
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783.
R. Leavitt
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783.
T. Feng
Affiliation:
University of Maryland, Dptm. of Materials & Nuclear Engineering, College Park, MD 20742.
A. Christou
Affiliation:
University of Maryland, Dptm. of Materials & Nuclear Engineering, College Park, MD 20742.
Get access

Abstract

Strained (x=0.48) and lattice-matched (x=0.53) InxGal-xAs/InAlAs/InP (100) MQWs have been investigated by photoreflectance. In the strained sample the relative intensities of the light-hole and heavy-hole excitonic transitions is different for the two different polarizations of the incident light parallel and perpendicular to the ]0-1-1 ] direction. This polarization anisotropy is explained in terms of the spontaneous formation of “quantum wires” and the presence of anisotropic strain due to spinodal-like phase decomposition of the InGaAs alloy in In-rich and Ga-rich regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chou, S T, Cheng, K Y, Chou, L J, Hsieh K C J.Appl.Phys., 78, 6270 (1995).Google Scholar
2 Shen, H, Pamulapati, J, Wraback, M, Taysing-Lara, M, Dutta, M, Kuo, H C, Lu Y IEEE Photon.Technol. Lett., 6, 700 (1994).Google Scholar
3 Jewell, L, McCall, S L, Lee, Y H, Scherer, A, Gossard, A C, English J H Appl. Phys. Lett., 54, 1400 (1989).Google Scholar
4 Dimoulas, A, Leng, J,K P, Giapis, Georgakilas, A, Michelakis, C, Christou A Phys. Rev., B47, 7198 (1993).Google Scholar
5 Dimoulas, A, Tober, R, Leavitt, R, Christou, A, unpublished data.Google Scholar
6 Acosta-Ortiz, S E, Lastras-Martinez A Phys. Rev. B 40, 1426 (1989).Google Scholar
7 Kwok, S H, Grahn, H T, Ploog, K, Merlin R Phys. Rev. Lett. 69, 973 (1992).Google Scholar
8 LaPierre, R R, Okada, T, Robinson, B J, Thompson, D A, Weatherly G C J. Cryst. Growth 155, 1 (1995).Google Scholar
9 Tsuchiya, M, Gaines, J M, Yan, R H, Simes, R J, Holtz, P O, Coldren, L A, Petroff, P M, Phys. Rev. Lett. 62, 466 (1989).Google Scholar
10 Glass, F, J. Appl. Phys., 62, 3201 (1987).Google Scholar