Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:58:35.706Z Has data issue: false hasContentIssue false

Strained-Layer Superlattices and Strain-Induced Light Holes

Published online by Cambridge University Press:  26 February 2011

G. C. Osbourn*
Affiliation:
Sandia Natibnal Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

The capability of growing high quality strained-layer superlattices (SLS's) from lattice-mismatched semiconductors opens up new opportunities in both basic and applied material sciences. This flexibility in the choice of SLS layer materials allows the study of quantum well effects in a variety of new and interesting heterojunction systems. In addition, the large tetragonal distortions of the SLS layers allow these structures to exhibit unique features which are not found in bulk semiconductors. An exciting example is the possibility of tailoring certain SLS materials so that they exhibit small two dimensional hole effective masses and enhanced low field hole mobilities at low temperatures and low carrier concentrations. Band structure calculations indicate that the layer strains, the direct band gap magnitudes of the layers, the valence band offset, and the hole energies all can play a role in determing these small two dimensional hole effective mass values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 32, 265 (1976).CrossRefGoogle Scholar
2. Osbourn, G. C., J. Appl. Phys. 53, 1586 (1982).10.1063/1.330615Google Scholar
3. Osbourn, G. C., Beifeld, R. M., and Gourley, P. L., Appl. Phys. Lett. 41, L72 (1982).10.1063/1.93450Google Scholar
4. Fritz, I. J., Dawson, L. R., and Zipperian, T. E., Appl. Phys. Lett. 43, 846 (1983).Google Scholar
5. Marzin, J. Y. and Rao, E. V. K., Appl. Phys. Lett. 43, 560 (1983).Google Scholar
6. Ludowise, M. J., Dietze, W. T., Lewis, C. R., Comras, M. D., Holonyak, N., Fuller, B. K. and Nixon, M. A., Appl. Phys. Lett. 42, 487 (1983).10.1063/1.93977CrossRefGoogle Scholar
7. Laidag, W. D., Campbell, P. J., Lin, Y. F., and Peng, C. K., Appl. Phys. Lett. 44, 653 (1984).Google Scholar
8. Bedair, S. M., Katsuyama, T., Timmons, M., and Tischler, M. A., IEEE Electron. Dev. Lett. EDL–5, 45 (1984).CrossRefGoogle Scholar
9. Temkin, H. and Tsang, W. T., J. Appl. Phys. 55, 1413 (1984).10.1063/1.333233Google Scholar
10. Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T., and Lynch, R. T., Appl. Phys. Lett. 44, 102 (1984).Google Scholar
11. Voisin, P., Delalande, C., Voos, M., Chang, L. L., Segmuller, A., Chang, C. A., and Esaki, L., Phys. Rev. B30, 2276 (1984).Google Scholar
12. Klem, J., Fischer, R., Masselink, W. T., Kropp, W., and Morkoc, H., J. Appl. Phys. 55, 3843 (1984).CrossRefGoogle Scholar
13. Grunthaner, F. J., Proc. of ist Intl. Conf. on Superlattices, Microstructures, and Microdevices, Champaign, IL, 8/12–16/84.Google Scholar
14. Osbourn, G. C., J. Vac. Sci. Technol. B1, 379 (1983).Google Scholar
15. Osbourn, G. C., Mat. Res. Soc. Symp. Proc. Vol.25 (1984).Google Scholar
16. Schirber, J. E., Fritz, I. J., Dawson, L. R., and Osbourn, G. C., Phys. Rev. B28, 2229 (1983).CrossRefGoogle Scholar
17. Zipperian, T. E., Dawson, L. R., Osbourn, G. C., and Fritz, I. J., Proc. of IEEE Intl. Electron Devices Meetings, 696 (1983).Google Scholar
18. Gourley, P. L. and Biefeld, R. M., Appl. Phys. Lett. 45, 749 (1984).Google Scholar
19. Biefeld, R. M., Gourley, P. L., Fritz, I. J., and Osbourn, G. C., Appl. Phys. Lett. 43, 759 (1983).Google Scholar
20. Osbourn, G. C., J. Vac. Sci. Tehnol. B2, 176 (1984).Google Scholar
21. Osbourn, G. C., Proc. of 1st Intl. Conf. on Superlattices, Microstructures, and Microdevices, Champaign, IL 8/12–16/84.Google Scholar
22. Chaffin, R. J., Osbourn, G. C. and Zipperian, T. E., unpublished.Google Scholar
23. Schirber, J. E., Dawson, L. R., and Fritz, I. J., unpublished.Google Scholar