Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:36:59.593Z Has data issue: false hasContentIssue false

Strained Layer Semiconductor Films: Structure and Stability

Published online by Cambridge University Press:  26 February 2011

L. C. Feldman
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. Bevk
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
B. A. Davidson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
H.-J. Gossmann
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. Ourmazd
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
T. P. Pearsall
Affiliation:
AT&T Bell Laboratories, Holmdel, New Jersey 07733
M. Zinke-Allmang
Affiliation:
AT&T Bell Laboratories, Holmdel, New Jersey 07733
Get access

Abstract

Strained layer epitaxy is a process for the formation of new materials with a strain and composition modulation in the one to one hundred monolayer range. Two aspects of strained epitaxial growth are discussed in this paper. We first consider the clustering process, a basic limitation in strained layer epitaxy. A second experiment examines the strain in few monolayer epitaxial films of Ge embedded in Si(100). We show that the strain in these monolayer films is comparable to that expected from bulk elastic constants and discuss the new properties of these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]van der Merwe, J. H. in Single Crystal Films, ed. by Francombe, M. H. and Sato, H., (Pergamon, Oxford, 1964) p. 139.Google Scholar
[2]Mathews, J. W. in Epitaxial Growth Part 2, ed. by Mathews, J. W. (Academic Press, New York 1975) p. 559.Google Scholar
[3]Grabow, M. H., Gilmer, G. H. in Semiconductor-based Heterostructures. Interfacial Structure and Stability, edited by Green, M. L. et al. (Metallurgical Soc., Warrendale, 1986) p. 3.Google Scholar
[4]Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T. and Lynch, R. T., Appl. Phys. Lett. 44, 102 (1984).Google Scholar
[5]Bevk, J., Mannaerts, J. P., Ourmazd, A., Feldman, L. C., Davidson, B. A., Appl. Phys. Lett. 49, 286 (1986).Google Scholar
[6]Bevk, J., Davidson, B. A., Feldman, L. C., Gossmann, H.-J., Mannaerts, J. P., Nakahara, S. and Ourmazd, A., J. Vac. Sci. and Tech. B 5, 1147 (1987).Google Scholar
[7]Feldman, L. C., Mayer, J. W., Picraux, S. T., Materials Analysis by Ion Channeling, (Academic Press, New York, 1982).Google Scholar
[8]Feldman, L. C. and Mayer, J. W., Fundamentals of Surface and Thin Film Analysis, (Elsevier, New York, 1986).Google Scholar
[9]Feldman, L. C., Bevk, J., Davidson, B. A., Gossmann, H.-J. and Mannaerts, J. P., Phys. Rev. Lett. 59, 664 (1987).Google Scholar
[10]Fiory, A. T., Bean, J. C., Feldman, L. C. and Robinson, I. K., J. Appl. Phys. 56, 1227 (1984).Google Scholar
[11]Pearsall, T. P., Bevk, J., Feldman, L. C., Bonar, J. M., Mannaerts, J. P. and Ourmazd, A., Phys. Rev. Let. 58, 729 (1987).Google Scholar
[12]Hybertsen, M. S., Schluter, M., People, R., Jackson, S. A., Lang, D., Pearsall, T., Vandenberg, J. M., Bean, J. C. and Bevk, J. (to be published).Google Scholar