Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T05:23:17.919Z Has data issue: false hasContentIssue false

Strain/Damage in Crystalline Materials Bombarded by MeV Ions: Recrystallization of GaAs by High-Dose Irradiation

Published online by Cambridge University Press:  25 February 2011

C. R. Wie
Affiliation:
Divisions of Physics,Astronomy,and Mathematics and Engineering and Applied Science,California Institute of Technology, Pasadena,California91125
T. Vreeland Jr.
Affiliation:
Divisions of Physics,Astronomy,and Mathematics and Engineering and Applied Science,California Institute of Technology, Pasadena,California91125
T. A. Tombrello
Affiliation:
Divisions of Physics,Astronomy,and Mathematics and Engineering and Applied Science,California Institute of Technology, Pasadena,California91125
Get access

Abstract

MeV ion irradiation effects on semiconductor crystals, GaAs(100) and Si (111) and on an insulating crystal CaF2 (111) have been studied by the x-ray rocking curve technique using a double crystal x-ray diffractometer. The results on GaAs are particularly interesting. The strain developed by ion irradiation in the surface layers of GaAs (100) saturates to a certain level after a high dose irradiation (typically 1015/cm2), resulting in a uniform lattice spacing about 0.4% larger than the original spacing of the lattice planes parallel to the surface. The layer of uniform strain corresponds in depth to the region where electronic energy loss is dominant over nuclear collision energy loss. The saturated strain level is the same for both p-type and n-type GaAs. In the early stages of irradiation, the strain induced in the surface is shown to be proportional to the nuclear stopping power at the surface and is independent of electronic stopping power. The strain saturation phenomenon in GaAs is discussed in terms of point defect saturation in the surface layer.

An isochronal (15 min.) annealing was done on the Cr-doped GaAs at temperatures between 200° C and 700° C. The intensity in the diffraction peak from the surface strained layer jumps at 200° C < T ≤ 300° C. The strain decreases gradually with temperature, approaching zero at T ≤ 500° C.

The strain saturation phenomenon does not occur in the irradiated Si. The strain induced in Si is generally very low (less than 0.06%) and is interpreted to be mostly in the layers adjacent to the maximum nuclear stopping region, with zero strain in the surface layer. The data on CaF2 have been analysed with a kinematical x-ray diffraction theory to get quantitative strain and damage depth profiles for several different doses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sadana, D. K, Choski, H., Washburn, J., and Cheung, N. W, Appl. Phys. Lett. 44, 301 (1984).Google Scholar
2. Speriosu, V. S, Paine, B. M, Nicolet, M-A., and Glass, H. L Appl. Phys. Lett. 40, 604 (1982).Google Scholar
3. Harris, J. S, Eisen, F. H, Welch, B., Haskell, J. D, Pashly, R. D, and Mayer, J. W, Appl. Phys. Lett. 21, 601 (1972).Google Scholar
4. Hodgson, R. T, Baglin, J. E. E., Pal, R., Neri, J. M, and Hammer, D. A, Appl. Phys. Lett. 37, 187 (1980).Google Scholar
5. Fleischer, R. L, Price, P. B, and Walker, R. M, Nuclear Tracks in Solids, (Univ. of California Press, Berkeley, 1975).Google Scholar
6. Qiu, Y., Griffith, J. E, and Tombrello, T. A, Nucl. Instr. Meth. B1, 118 (1984); Tombrello, T. A, Int. J. Mass Spec. Ion Phys. 53, 307 (1983).Google Scholar
7. Qiu, Y., Griffith, J. E, Meng, W. J, and Tombrello, T. A, Rad. Eff. 70, 231 (1983).Google Scholar
8. Tombrello, T. A, Nucl. Instr. Meth, B2, 555 (1984); Tombrello, T. A, Wie, C. R, Itoh, N., and Nakyama, T., Phys. Lett. 100A, 42 (1984); Tombrello, T. A, Nucl. Instr. Meth. B1, 23 (1984).Google Scholar
9. Tombrello, T. A, Nucl. Instr. Meth 218, 679 (1983); Tombrello, T. A, J. Phys. Soc. Jap. in press (1984).Google Scholar
10. Mendenhall, M. H, Ph.D. Thesis, California Institute of Technology (1983);Google Scholar
Tombrello, T. A, J. Mat. Sci. Eng., in press (1984);Google Scholar
Wie, C. R, Shi, C. R, Mendenhall, M. H, Livi, R. P, Vreeland, T. Jr., and Tombrello, T. A, Nucl. Instr. Meth., in press (1984);Google Scholar
Paine, S., Wie, C. R, Mendenhall, M. H, Livi, R. P, Vreeland, T. Jr., and Tombrello, T. A, Mat. Res. Soc. Symp. Proc, submitted (1984).Google Scholar
11. Wie, C. R, Vreeland, T. Jr., and Tombrello, T. A, Nucl. Instr. Meth., submitted (1984).Google Scholar
12. Lang, D. V, Logan, R. A, and Kimmerling, L. C, Phys. Rev. B 15, 4874 (1977).Google Scholar
13. Speriosu, V. S, J. Appl. Phys. 52, 6094 (1981); Miller, G. L, Boie, R. A, Cowan, P. L, Golvchenko, J. A, Kerr, R. W, and Robinson, D. A. H., Rev. Sci. Instr. 50, 1062 (1979).Google Scholar
14. Strocka, B., Bartels, G., and Spohr, R., Appl. Phys. 21, 141 (1980).Google Scholar
15. Speriosu, V. S and Vreeland, T. Jr., J. Appl. Phys. 56, 1591 (1984).Google Scholar
16. Thommen, K., Rad. Eff. 2, 201 (1970).Google Scholar
17. Pons, D. and Borgoin, J., Phys. Rev. Lett. 47, 1293 (1981).Google Scholar
18. Lindhard, J. and Scharff, M., Phys. Rev. 124, 128 (1961).Google Scholar
19. Tombrello, T. A, Nucl. Instr. Meth. B1, 23 (1984).Google Scholar
20. Mayer, J. W, Erikson, L., and Davis, J. A, Ion Implantation in Semiconductors (Academic Press, New York and London, 1970, p. 23).Google Scholar
21. Wilson, W. D, Haggmark, L. G, and Biersack, J. P, Phys. Rev. B 15, 2458 (1977).Google Scholar
22. Sosin, A. and Bauer, W., Studies in Radiation Effects, ed. Dienes, G. J, Vol. 3 (Gordon and Breach, New York, 1969).Google Scholar
23. Mayer, J. W, Erikson, L., and Davis, J. A, Ion Implantation in Semiconductors (Academic Press, New York and London, 1970, p. 99).Google Scholar
24. Wörner, R., Kaufman, U., and Schneider, J., Appl. Phys. Lett. 40, 141 (1982).Google Scholar