Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T08:11:52.374Z Has data issue: false hasContentIssue false

The Strain-Assisted Nucleation and Growth Behavior of Co Islands: An Indirect Study of Nanopatterning Using the Remanent Magnetization Measurement (Δm)

Published online by Cambridge University Press:  21 March 2011

Yong-Won Lee
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, U.S.A.
Bruce M. Clemens
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, U.S.A.
Get access

Abstract

Nanopatterning through strain-assisted nucleation of metal adatom islands is experimentally studied using a magnetic remanence or Δm measurement. The strain field is generated by a square array of interfacial misfit dislocations with a spacing of 4.1 nm due to the lattice mismatch of the epitaxial Pt(002) film on MgO(002) substrates. The intensity of strain is controlled by changing the thickness of the Pt underlayer ranging from 2.0 to 10.0 nm. The amount of exchange coupling among the Co grains grown on Pt template is measured using the μm technique as an indirect indicator of magnetic grain distribution. From the measured μm values, the morphology of adatom islands is indirectly deduced. The Co islands on a 5.0 nm thick Pt underlayer show the overall negative behavior of Δm curve, i.e., the strongest nanopatterning effect. Strain driven nucleation is found to be achievable through a narrow selection of experimental growth conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shiryaev, S. Y., Jensen, F., Hansen, J. L., Peterson, J. W., and Larsen, A. N., Phys. Rev. Lett. 78, (1997) 503 Google Scholar
2. Teichert, C., Hofer, C., Lyutovich, K., Bauer, M. and Kasper, E., Thin Solid Films 380 (25) 2000 Google Scholar
3. Leroy, F., Eymery, J., and Gentile, P., Appl. Phys. Lett. 80 (2002) 3078 Google Scholar
4. Brune, H., Röder, H., Boragno, C., and Kern, K., Phys. Rev. B 49 (4) (1994) 2997 Google Scholar
5. Brune, H., Giovannini, M., Bromann, K., and Kern, K., Nature 394 (1998) 451 Google Scholar
6. Jödicke, H., Schaub, R., Monot, R., Buttet, J., and Harbich, W., Surf. Sci. 475 (2001) 109 Google Scholar
7. Larsson, M., Sabiryanov, R., Cho, K., and Clemens, B., J. Appl. Phys. 94 (5) (2003) 3470 Google Scholar
8. Lairson, B., Visokay, M., Sinclair, R., Hagstrom, S. and Clemens, B., App. Phys. Lett. 61 (12) (1992) 1390 Google Scholar
9. Freund, L. B., Adv. Appl. Mech. 30 (1) (1994)Google Scholar
10. Papusoi, C. and Suzuki, T., J. Mag. and Magn. Materials, 262 (2003) 325 Google Scholar
11. Beardsley, I. and Zhu, J.-G., IEEE Trans. Magn. 27 (6) (1991) 5037 Google Scholar
12. Zhu, J.-G. and Bertram, H., J. Appl. Phys. 69 (8) (1991) 4709 Google Scholar
13. Mayo, P., O'Grady, K., Kelly, P., Cambridge, J., Sanders, I., Yogi, T., and Chantrell, R., J. Appl. Phys. 69 (8) (1991) 4733 Google Scholar
14. Wittig, J., Nolan, T., Ross, C., Schabes, M., Tang, K., Sinclair, R., and Bentley, J., IEEE Trans. Mag. 34(4) (1998) 1564 Google Scholar