Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:24:27.811Z Has data issue: false hasContentIssue false

The Strain Rate Sensitivity of Ni3(Al,Ta) Single Crystals.

Published online by Cambridge University Press:  26 February 2011

J. Bonneville
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland).
J.L. Martin
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland).
Get access

Abstract

In order to obtain more complete information about the strain rate sensitivity of the flow stress of L12 alloys, Ni3Al,Ta) single crystals have been deformed in compression, over a range of temperatures (293–1273K), at two different strain rates and in stress relaxation experiments.

During the stress relaxation tests, at almost all the temperatures (except T~470K), a logarithmic decrease of the stress as a function of time has been observed. This is in fair agreement with the classical frame work of the thermal activation theory of dislocation glide. Thus, the corresponding apparent activation volumes have been determined and the nonmonotonic variation of this activation parameter with the temperature indicates that it is necessary to consider more than one plastic deformation process. These new results are discussed in terms of the previously published models which account for the plastic behaviours of the L12 compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Clément, N., J. Micr. Spec. II, 195, (1986).Google Scholar
2. Umakoshi, Y., Pope, D.P. and Vitek, V., Acta Met., 32, 449, (1984).Google Scholar
3. Miura, S., Ochia, S., Oya, Y., Mishima, Y. and Suzuki, T., Mat. Res. Soc. Symp. Proc., 133, 341, (1989).Google Scholar
4. Takasugi, T., Watanabe, S., Izumi, O. and Fat-Halla, N.K., Acta Met., 37, 3425, (1989).CrossRefGoogle Scholar
5. Thornton, P.H., Davies, R.G. and Johnston, T.L., Metall. Trans., 1, 207, (1970).CrossRefGoogle Scholar
6. Stoioer, J., Bonneville, J. and Martin, J.L., ICSMA 8 Proc., Pergamon Press, 1, 457, (1988).Google Scholar
7. Baluc, N., Stoiber, J., Bonneville, J. and Martin, J.L., Israel J. of Tech., IMEC 4th, 24, 269, (1988).Google Scholar
8. Dupeux, M., Henriet, J. and Ignat, M., Acta Met., 35, 2203, (1987).CrossRefGoogle Scholar
9. Lours, P., Phd thesis, Université Paul Sabatier de Toulouse, France, (1989).Google Scholar
10. Bonneville, J., Escaig, B. and Martin, J.L., Acta Met., 36, 1989, (1988).Google Scholar
11. Hemker, K. J., Phd thesis, Stanford University, (1990).Google Scholar
12. Coujou, A., Phd thesis n°982, Université Paul Sabatier de Toulouse, France, (1981).Google Scholar
13. Sun, Y.Q. and Hazzledine, P.M., Mat. Res. Soc. Symp. Proc., 133, 197, (1988).CrossRefGoogle Scholar
14. Veyssi`re, P., Mat. Res. Soc. Symp. Proc., 133, 175, (1988).Google Scholar
15. Mills, M.J., Baluc, N. and Karnthaler, H.P., Mat. Res. Soc. Symp. Proc., 133, 203, (1988).Google Scholar
16. Clément, N., Caillard, D., Lours, P. and Coujou, A., Scripta Met., 23, 563, (1989).Google Scholar
17. Paidar, V., Pope, D.P. and Vitek, V., Acta Met., 32, 435, (1984).Google Scholar