Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:17:13.875Z Has data issue: false hasContentIssue false

Strain Inhomogeneity in Epitaxial Colossal Magnetoresistive La1-xCaxMnO3 Thin Films

Published online by Cambridge University Press:  10 February 2011

R. A. Rao
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
T. K. Nath
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
D. Lavric
Affiliation:
Department of Mechanical Eng. and Materials Science, Duke University, Durham, NC 27708
C. B. Eom
Affiliation:
F. Tsui
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
Get access

Abstract

The strain inhomogeneity and crystallographic domain structures and their influence on the electrical transport and magnetic properties of epitaxial colossal magnetoresistive La1-xCaxMnO3 (x = 0.2, 0.33) films have been studied as a function of film thickness and two types of (001) substrates, SrTiO3 and LaAlO3. Out-of-plane and in-plane lattice parameters were determined using normal and grazing incidence x-ray diffraction (GID), and least-squares fits of off-axis x-ray reflections. The lattice strain near the film surface as determined by GID appears to relax faster than that at the film interior as determined by the least-squares fit, indicating the presence of strain inhomogeneity in the films. The observed strain inhomogeneity appears to influence the magnetic and electrical transport properties. In particular the measured temperature dependent magnetization exhibits multiple transitions indicating a variation of Curie temperatures within the same sample. While the very thin films exhibit single out-of-plane domains, accompanied by a high crystalline coherence and smooth surfaces, strain relaxation in thicker films leads to mixed ( 001)T and (110)T textures, and increased mosaic spread and surface roughness. The films also exhibit electrically insulating “dead” layers about 100 – 200Å thick.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science, 264, 414 (1994).Google Scholar
2. Ramirez, A.P., J. Phys.: Condens. Matter, 9, 8171 (1997).Google Scholar
3. Hwang, H.Y., Cheong, S.-W., Radaelli, P.G., Marezio, M. and Batlogg, B., Phys. Rev. Lett., 75, 914 (1995).10.1103/PhysRevLett.75.914Google Scholar
4. Laukhin, V., Fontcuberta, J., Garcia-Munoz, J.L., and Obradors, X., Phys. Rev. B, 52, 15046 (1995).Google Scholar
5. Neumeier, J.J., Hundley, M.F., Thompson, J.D., and Heffner, R.H., Phys. Rev. B, 52, R7006 (1995).10.1103/PhysRevB.52.R7006Google Scholar
6. Jin, S., Tiefel, T.H., McCormack, M., O'Bryan, H.M., Chen, L.H., Ramesh, R., and Schurig, D., Appl. Phys. Lett., 67, 557 (1995).10.1063/1.115168Google Scholar
7. Suzuki, Y., Hwang, H.Y., Cheong, S-W., and Dover, R.B. van, Appl. Phys. Lett., 66 140 (1997).10.1063/1.119454Google Scholar
8. O'Donnell, J., Rzchowski, M.S., Eckstein, J.N., and 1. Bozovic, Appl. Phys. Lett., 72, 1775 (1998).10.1063/1.121181Google Scholar
9.Kwon, C., Robson, M.C., Kim, K.-C., Gu, J.Y., Lofland, S.E., Bhagat, S.M., Trajanovic, Z., Rajeswari, M., Venkatesan, T., Kratz, A.R., Gomez, R.D, and Ramesh, R., J. Magn. Magn. Mater., 66 229 (1997).10.1016/S0304-8853(97)00058-9Google Scholar
10.Nath, T.K., Rao, R, A., Lavric, D., Eom, C.B., Wu, L., Tsui, F., Appl. Phys. Lett., 74, 1615 (1999).10.1063/1.123634Google Scholar
11.Millis, A.J., Darling, T. and Migliori, A., J. Appl. Phys., 66 1588 (1998).10.1063/1.367310Google Scholar
12.Millis, A.J., Goyal, A., Rajeswari, M., Ghosh, K., Shreekala, R., Greene, R.L.. Ramesh, R., and Venkatesan, T., unpublished.Google Scholar
13.Aarts, J., Freisem, S., Hendrikx, R. and Zandbergen, H.W., Appl. Phys. Lett., 72, 2975 (1998).10.1063/1.121512Google Scholar
14.Rao, R.A., Gan, Q., Cava, R.J., Suzuki, Y., Gausepohl, S.C., Lee, Mark, Eom, C.B., Appl. Phys. Lett., 66 3035 (1997).10.1063/1.118741Google Scholar
15.Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., Luther, K.E., Geballe, T.H. and Laderman, S.S., Appl. Phys. Lett., 55, 595 (1989).10.1063/1.102436Google Scholar
16.Rao, R, A., Lavric, D., Nath, T.K., Eom, C.B., Wu, L., Tsui, F., Appl. Phys. Lett., 73, 3294 (1998).10.1063/1.122749Google Scholar
17.Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., Dover, R. B. van, Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F., Jr., Science, 258, 1766(1992).10.1126/science.258.5089.1766Google Scholar
18.Aarts, J., Freisem, S., Hendrikx, R. and Zandbergen, H.W., Appl. Phys. Lett., 72, 2975 (1998).10.1063/1.121512Google Scholar
19.Yeh, N.-C., Vasquez, R.P., Beam, D.A., Fu, C.-C., Huynh, J., and Beach, G., J. Phys.: Condens. Matter, 9, 3713 (1997).Google Scholar
20.Hawley, M.E., Adams, C.D., Arendt, P.N., Brosha, E.L., Garzon, F.H., Houlton, R.J., Hundley, M.F., Heffner, R.H., Jia, Q.X., Neumeier, J., and Wu, X.D., J. Crystal Growth, 174, 455 (1997).10.1016/S0022-0248(96)01142-6Google Scholar
21.Sun, J.Z. et al., unpublished results.Google Scholar