Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:01:35.605Z Has data issue: false hasContentIssue false

Strain Aging behavior In NiAI Microalloyed with Interstitial and Substitutional Solutes

Published online by Cambridge University Press:  15 February 2011

M. L. Weaver
Affiliation:
Center for Nonlinear & Nonequilibrium Aeroscience, Florida A&M University, Tallahassee, FL 32306–4005
R. D. Noebe
Affiliation:
NASA-Lewis Research Center, Cleveland, OH 44135
M. J. Kaufman
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Dynamic strain aging has been investigated in polycrystalline NiAl alloys containing combined additions of interstitial and substitutional impurities. The results indicate that strain aging can be enhanced in polycrystalline alloys containing concentrations of silicon or iron in excess of 0.15 at.% in addition to conventional levels of carbon. This co-doping leads to very dramatic strain aging events, comparable to those typically observed in single crystals. This effect will be discussed with respect to conventional theories of strain aging.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brzeski, J. M., Hack, J. E., Darolia, R. and Field, R. D., Mater. Sci. Eng. A170, 1118 (1993).Google Scholar
2. Brzeski, J. M., Hack, J. E. and Darolia, R., in High-Temperature Ordered Intermetallic Alloys VI, Horton, J. A., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. S., Eds., Materials Research Society, vol. 364, Pittsburgh, PA, p. 419424 (1995).Google Scholar
3. Brzeski, J. M., Ph.D. Dissertation, Yale University (1995).Google Scholar
4. Hack, J. E., Brzeski, J. M. and Darolia, R., Scripta Metall. Mater. 27, 12591263 (1992).Google Scholar
5. Hack, J. E., Brzeski, J. M., Darolia, R. and Field, R. D., in High-Temperature Ordered Intermetallics V, Baker, I., Darolia, R., Whittenberger, J. D. and Yoo, M. H., Eds., Materials Research Society, vol. 288, Pittsburgh, PA, p. 11971202 (1993).Google Scholar
6. Hack, J. E., Brzeski, J. M. and Darolia, R., Mater. Sei. Eng. A192/193, 268276 (1995).Google Scholar
7. Weaver, M. L., Noebe, R. D., Lewandowski, J. J., Oliver, B. F. and Kaufman, M. J., Mater. Sci. Eng. A192/193, 179185 (1995).Google Scholar
8. Weaver, M. L., Levit, V., Kaufman, M. J. and Noebe, R. D., in High-Temperature Ordered Intermetallic Alloys VI, Horton, J. A., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. S., Eds., Materials Research Society, vol. 364, Pittsburgh, PA, p. 425430 (1995).Google Scholar
9. Weaver, M. L., Ph.D. Dissertation, University of Florida (1995).Google Scholar
10. Weaver, M. L., Kaufman, M. J. and Noebe, R. D., Intermetallics 4, 121129 (1996).Google Scholar
11. Weaver, M. L., Noebe, R. D. and Kaufman, M. J., Scripta Mater. 34, 941948 (1996).Google Scholar
12. Weaver, M. L., Noebe, R. D. and Kaufman, M. J., Metall. Mater. Trans. A, in press (1996).Google Scholar
13. Weaver, M. L., Noebe, R. D., Lewandowski, J. J., Oliver, B. F. and Kaufman, M. J., Intermetallics 4, 533542 (1996).Google Scholar
14. Weaver, M. L., Noebe, R. D. and Kaufman, M. J., Intermetallics 4, 593600 (1996).Google Scholar
15. Golberg, D. and Sauthoff, G., Intermetallics 4, 143158 (1996).Google Scholar
16. Golberg, D. and Sauthoff, G., Intermetallics 4, 253271 (1996).Google Scholar
17. Winton, J. S., M.S. Thesis, University of Florida (1995).Google Scholar
18. McCormick, P. G., Acta Metallurgica 20, 351354 (1972).Google Scholar
19. Noebe, R. D., Bowman, R. R. and Nathal, M. V., Int. Mater. Rev. 38, 193232 (1993).Google Scholar
20. Weaver, M. L., Duncan, A. J. and Miller, M. K., unpublished research, Oak Ridge National Laboratory (1996).Google Scholar
21. Tambakis, N. C.. Lusby, T. and Melmed, A. J., Johns Hopkins University, Quarterly Report, October 15, 1995-January 14, 1996.Google Scholar
22. Chou, T. C. and Nieh, T. G., Scripta Metall. Mater. 25, 20592064 (1991).Google Scholar
23. Chou, T. C. and Nieh, T. G., in High-Temperature Ordered Intermetallic Alloys IV, Johnson, L. A., Pope, D. P. and Stiegler, J. O., Eds., Materials Research Society, vol. 213, Pittsburgh, PA, p. 10451050 (1991).Google Scholar
24. Hosoda, H., Inoue, K. and Mishima, Y., in High-Temperature Ordered Intermetallic Alloys VI, Horton, J., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. S., Eds., Materials Research Society, vol. 364, Pittsburgh, PA, p. 437442 (1995).Google Scholar
25. Anderson, I. M., Duncan, A. J. and Bentley, J., in High-Temperature Ordered Intermetallic Alloys VI, Horton, J., Baker, I., Hanada, S., Noebe, R. D. and Schwartz, D. S., Eds., Materials Research Society, vol. 364, Pittsburgh, PA, p. 443448 (1995).Google Scholar
26. Darolia, R., Field, R. D., Noebe, R. D., Garg, A. and Walston, W. S., GE Aircraft Engines/Air Force Office of Scientific Research, Final Report, July 1, 1991 - March 31, 1995.Google Scholar