Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:43:13.638Z Has data issue: false hasContentIssue false

Step Flow Surface Morphology in Plasma Assisted Molecular Beam Epitaxy Grown GaN

Published online by Cambridge University Press:  17 March 2011

Kazuhide Kusakabe
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, Japan 102-8554
Akihiko Kikuchi
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, Japan 102-8554
Katsumi Kishino
Affiliation:
Department of Electrical and Electronics Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, Japan 102-8554
Get access

Abstract

The surface morphologies of homoepitaxial GaN films grown by molecular beam epitaxy (MBE) on metalorganic chemical vapor deposition (MOCVD) grown GaN template layers were investigated, using atomic force microscopy (AFM). Typical surface morphology of MBE-grown films on MOCVD-templates was dominated by spiral hillocks due to the high density of dislocations having a screw character and large driving force of MBE growth. Introduction of the AlN multiple interlayer (AlN -MIL) into MBE-GaN layers suppressed the formation of spiral hillocks. It was attributed to obstructing the dislocation propagation by AlN-MIL. Migration enhanced epitaxy (MEE) growth of GaN also reduced the density and tightness of spiral hillocks. This observation was attributed to that MEE growth technique decreased the driving force of growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For example, Pearton, S. J., Zolper, J. C., Shul, R. J. and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
[2] Tarsa, E. J., Heying, B., Wu, X. H., Fini, P., DenBaars, S. P. and Speck, J. S., J. Appl. Phys. 82, 5472 (1997).Google Scholar
[3] Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B., Mishra, U. K., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett. 67, 1541 (1995).Google Scholar
[4] Heying, B., Tarsa, E. J., Elsass, C.R., Fini, P., DenBaars, S. P. and Speck, J. S., J. Appl. Phys. 85, 6470 (1999).Google Scholar
[5] Nishida, T., Akasaka, T. and Kobayashi, N., Jpn. J. Appl. Phys. 37, L459 (1998).Google Scholar
[6] Kikuchi, A., Yamada, T., Nakamura, S., Kusakabe, K., Sugihara, D. and Kishino, K., Jpn. J. Appl. Phys. 39, L330 (2000).Google Scholar
[7] Sugihara, D., Kikuchi, A., Kusakabe, K., Nakamura, S., Toyoura, Y., Yamada, T. and Kishino, K., Jpn. J. Appl. Phys. 39, L197 (2000).Google Scholar
[8] Sugihara, D., Kikuchi, A., Kusakabe, K., Nakamura, S., Toyoura, Y., Yamada, T. and Kishino, K.: Phys. Stat. Sol. 176, 323 (1999).Google Scholar
[9] Golan, Y., Fini, P., DenBaars, S. P. and Speck, J. S., Jpn. J. Appl. Phys. 37, 4695 (1998).Google Scholar
[10] Maffeis, T. G. G. D., Clark, S. A., Dunstan, P. R., Wilks, S. P., Evans, D. A., Peiro, F., Riechert, H. and Parbrook, P. J., Phys. Stat. Sol. 176, 751 (1999).Google Scholar
[11] Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S. and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000).Google Scholar
[12] Hong, S. K., Yao, T., Kim, B. J., Yoon, S. Y. and Kim, T. I., Appl. Phys. Lett. 77, 82 (2000).Google Scholar
[13] Burton, W. K., Cabrera, N. and Frank, F. C., Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).Google Scholar