Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T06:43:10.215Z Has data issue: false hasContentIssue false

Step Contours in the Development of Periodically Modulated Vicinal Surfaces

Published online by Cambridge University Press:  15 February 2011

S. Tanaka
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
C. C. Umbach
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
J. M. Blakely
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
R. M. Tromp
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598.
M. Mankos
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598.
Get access

Abstract

The connection between the atomic step distributions and decay modes of modulated surfaces is the focus of this paper. We have examined the arrangements of atomic steps on real 1- and 2-D periodic structures by scanning tunneling microscopy(STM) and low energy electron microscopy(LEEM) and have followed their development at temperature by LEEM. The steps present on the surface due to small ‘miscuts’ from exact singular planes can have major effects on both the mechanisms of shape development and the actual shapes that result. Major differences exist in the modes of development between 1- and 2-D periodic step arrays. Some of these observations have led us to a method for producing arrays of step-free Si(001) regions that may have application in device processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mullins, W. W., J. Appl. Phys., 28, 333, (1957); 30, 77, (1959).Google Scholar
2. Blakely, J. M. and Mykura, H., Acta Met., 10, 565, (1962).Google Scholar
3. Maiya, P. S. and Blakely, J. M., J. Appl. Phys.,38, 698, (1967).Google Scholar
4. see eg Ozdemir, M. and Zangwill, A., Phys. Rev B42, 5013, (1990).Google Scholar
5. Selke, W. and Duxbury, P. M., Phys. Rev. B52, 17468, (1995).Google Scholar
6. Bartelt, N. C., Tromp, R. M. and Williams, E. D., Phys. Rev lett., 73, 1656, (1994).Google Scholar
7. Rettori, A. and Villain, J., Physique, J. de, 49, 257, (1988).Google Scholar
8. Villain, J., Europhys. Lett., 2, 531, (1986).Google Scholar
9. Bonzel, H. P. and Mullins, W. W., Surf. Sci., 350, 285, (1996).Google Scholar
10. Surnev, S., Voigtlander, B., Bonzel, H. P. and Mullins, W. W., Surf. Sci., 360, 242, (1996).Google Scholar
11. Keeffe, M. E., Umbach, C. C. and Blakely, J. M., J. Phys. Chem. Solids, 55, 965, (1994).Google Scholar
12. Umbach, C. C., Keeffe, M. E. and Blakely, J. M., J.Vac. Sci. Technol., A11, 1830, (1993).Google Scholar
13. Pimpinelli, A., Villain, J., Wolf, D. E., Metois, J. J., Heyraud, J. C., Elkinani, I. and Uimin, G., Surf. Sci., 295, 143, (1993).Google Scholar
14. Bartelt, N. C., Einstein, T. E. and Williams, E. D., Surf. Sci., 273, 252, (1992).Google Scholar
15. Pellathy, S., Judy, A. and Blakely, J. M., (to be published).Google Scholar
16. Bartelt, N. C. Tanaka, S., Umbach, C. C., Tromp, R. M. and Blakely, J. M., (to be published).Google Scholar
17. Tanaka, S., Umbach, C. C., Blakely, J. M., M.Tromp, R. and Mankos, M., Appl. Phys. Lett., 69, 1235, (1996).Google Scholar