Article contents
Steady-State and Transient Electron Transport in ZnO: Recent Progress
Published online by Cambridge University Press: 23 June 2011
Abstract
We briefly review some recent results on the steady-state and transient electron transport that occurs within bulk wurtzite zinc oxide. These results were obtained using an ensemble semi-classical three-valley Monte Carlo simulation approach. They showed that for electric field strengths in excess of 180 kV/cm, the steady-state electron drift velocity associated with bulk wurtzite zinc oxide exceeds that associated with bulk wurtzite gallium nitride. The transient electron transport that occurs within bulk wurtzite zinc oxide was studied by examining how electrons, initially in thermal equilibrium, respond to the sudden application of a constant electric field. These transient electron transport results demonstrated that for devices with dimensions smaller than 0.1 μm, gallium nitride based devices will offer the advantage, owing to their superior transient electron transport, while for devices with dimensions greater than 0.1 μm, zinc oxide based devices will offer the advantage, owing to their superior high-field steady-state electron transport.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1327: Symposium G – Complex Oxide Materials for Emerging Energy Technologies , 2011 , mrss11-1327-g03-20
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
- 3
- Cited by