Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:33:46.940Z Has data issue: false hasContentIssue false

Statics and Dynamics of Grain Boundaries in Ni3Al

Published online by Cambridge University Press:  26 February 2011

Diana Farkas*
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Get access

Abstract

Various modeling techniques have been used to study the structure of grain boundaries in ordered compounds, particularly Ni3Al. The techniques include computer simulation, group theoretical analysis and the cluster variation method for high temperature effects. A multiplicity of possible grain boundary structures was analyzed for different misorientations and grain boundary plane location. 1The influence of several alloy properties like atomic size differences and deviation from stochiometry on the occurrence of these different structures is analyzed. The implications of these results for grain boundary misorientation distribution, grain boundary plane location and faceting behavior are discussed and compared to experimental findings. The possibility of orderdisorder transitions in the grain boundary region is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frost, H. J. and Spaepen, F., J. Phys. C 6, 73 (1982).Google Scholar
2. Takasugi, T. and Izumi, O., Acta Met. 31, 187 (1983).Google Scholar
3. Takasugi, T. and Izunmi, O., Acta Met. 35, 823 (1987).CrossRefGoogle Scholar
4. Frost, H. J., Acta Met. 35, 519 (1987).Google Scholar
5. Farkas, D. and Rangarajan, V., Acta Met. 35, 353 (1987).Google Scholar
6. Farkas, D., in Alloy Theory and Phase Equilibria, edited by Farkas, D. and Dyment, F. (American Society for Metals, U.S.A., 1986) p. 49.Google Scholar
7. Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. M., and Jackson, M. R., Scripta Met. 20, 129 (1986).Google Scholar
8. Gratias, D. and Portier, R., J. Phys. (Paris) C6 43, 15 (1982).Google Scholar
9. Portier, R., Thalal, A. and Gratias, D., in Les Joints de Grains Dans les Materiaux, edited by Aucouturier, M. (Les editions de Physique, France, 1984) p. 69.Google Scholar
10. Kalonji, G. and Cahn, J. W., J. Phys. (Paris) C6 12, 25 (1982).Google Scholar
11. Farkas, D. and Ran, A., Phys. Stat. Sol. A 93, 45 (1986).Google Scholar
12. Kalonji, G., PhD thesis, MIT, 1982.Google Scholar
13. Wyckoff, R., The Analytical Expression of the Results of the Theory of Space Groups. (Carnegie Institution, Washington, 1930).Google Scholar
14. Voter, A. F. and Chen, S. P., Mater. Res. Soc. Proc. 82, 175 (1987).Google Scholar
15. Chen, S. P., Voter, A. F., Srolovitz, D. J., Phys. Rev. Lett. A57, 1308 (1986).Google Scholar
16. Chen, S. P., Voter, A. F., Srolovitz, D. J., Mat. Res. Soc. Synup. Proc. 81, 45 (1987).Google Scholar
17. Chen, S. P., Voter, A. F., Srolovitz, D. J., presented at the Conference “Interface Science and Engineering,” Lake Placid, New York, July 12–16, 1987 (to be published in Journal de Physique).Google Scholar
18. Chen, S.P., Voter, A.F. and Srolovitz, D.J., Scripta Met. 20, 1389 (1986).Google Scholar
19. Farkas, D., Savino, E.J., Chidamabaram, F.P., Voter, A.F., Chen, S.P., and Srolovitz, D., to be published, Phil Mag.Google Scholar
20. Savino, E.J. and Farkas, D., Phil. Mag. A 58 1, 227 (1988).Google Scholar
21. Foiles, S. and Daw, M. S., J. Mat. Res. 2, 5 (1987).Google Scholar
22. De Hosson, J. Th., Pestman, B., Schapink, F. W. and Tichelaar, F.D., Mat. Res. Soc. Symp. Proc. I, Reno, Nevada, Spring 1988.Google Scholar
23. Kruisman, J. J., Vitek, V. and De Hosson, J. Th. M., Acta Met. 36, 2729 (1988).Google Scholar
24. Oh, Y. and Vitek, V., Acta Met. 34, 1941 (1986)Google Scholar
25. Fitzsimmons, M. R., Vaudin, M. D. and Sass, S. L., Scripta Met. 22, 105 (1988).Google Scholar
26. Oh, Y., Vitek, V. and Egami, T., Scripta Met. 22, 111 (1988).Google Scholar
27. Farkas, D., to be published, Scripta Met.Google Scholar
28. Foiles, S., Mat. Res. Soc. Synup. I, Reno, Nevada, Spring 1988.Google Scholar
29. Ercolessi, F., Parrinello, M. and Tosatti, E., Surf. Sci. A177, 314 (1986).Google Scholar
30. Tichelaar, F. D. and Schapink, F. W., Phil. Mag. A54, L55 (1986).Google Scholar
31. Yamaguchi, M., Paidar, V., Pope, D. P., and Vitek, V., Phil. Mag. A45, 867 (1982).Google Scholar
32. Farkas, D. and Savino, E. J., to be published.Google Scholar
33. Farkas, D. and Savino, E. J., Scripta Met. 22, 557 (1988).Google Scholar
34. Wolf, D., Acta Met. 32, 245 (1984).Google Scholar
35. Wolf, D., Acta Met. 32, 735 (1984).Google Scholar
36. Foiles, S., Mat. Res. Soc. Synup. Proc. 81, 51 (1987).Google Scholar
37. Deynimier, P. and Kalonji, G., J. Physique C4, 213 (1985).Google Scholar
38. Farkas, D. and Jang, H., Mat. Res. Soc. Synnp. Proc. 81, 65 (1987).Google Scholar
39. Farkas, D. and Jang, H., Mat. Res. Soc. Synmposium I, Reno, Nevada, Spring 1988.Google Scholar
40. Kikuchi, P. and Cahm, J., Phys. Rev. 21, 1893 (1980).Google Scholar
41. Farkas, D. and Jang, H., to be published, Phys. Rev.Google Scholar
42. Kikuchi, R., Mat. Res. Soc. Symup. I, Reno, Nevada, Spring 1988.Google Scholar
43. Sanchez, J. M., Eng, S., Wu, Y. P., and Tien, J. K. Mat. Res. Soc. Symp. Proc. 81, 57 (1987).Google Scholar
44. Vitek, V., Chen, S. P., Kruisman, J. J., and De Itosson, J. Th. M., to be published in “Grain boundary Chemistry and Intergranular Fracture”, edited by Brueus, S. M. and Was, G. S. (1988).Google Scholar
45. Mackenzie, R. A. D. and Sass, S. L., Scripta Met. 22 11, 1807 (1988).Google Scholar