Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:42:32.411Z Has data issue: false hasContentIssue false

Stacked InGaN/AlGaN Double Heterostructures

Published online by Cambridge University Press:  10 February 2011

J. C. Roberts
Affiliation:
ECE Dept., North Carolina State University, Raleigh, North Carolina 27695–7911.
F. G. McIntosh
Affiliation:
ECE Dept., North Carolina State University, Raleigh, North Carolina 27695–7911.
M. E. Aumer
Affiliation:
ECE Dept., North Carolina State University, Raleigh, North Carolina 27695–7911.
E. L. Piner
Affiliation:
MSE Dept., North Carolina State University, Raleigh, North Carolina 27695–7916.
V. A. Joshkin
Affiliation:
ECE Dept., North Carolina State University, Raleigh, North Carolina 27695–7911.
S. Liu
Affiliation:
MSE Dept., North Carolina State University, Raleigh, North Carolina 27695–7916.
N. A. El-Masry
Affiliation:
MSE Dept., North Carolina State University, Raleigh, North Carolina 27695–7916.
S. M. Bedair
Affiliation:
ECE Dept., North Carolina State University, Raleigh, North Carolina 27695–7911.
Get access

Abstract

InGaN ternary alloys can be the basis for light emission from the near UV to the red region of the electromagnetic spectrum. When InGaN/AIGaN double heterostructures emitting different colors are stacked in a single structure, simultaneous emission of different wavelengths will be achieved. If the color and the intensity of emission for each well are adjusted properly, tailored emission spectra, including white light, will be feasible. We demonstrate this concept with two wells emitting at different wavelengths that are stacked between AIGaN barrier layers. The emitted PL spectra for the stacked structure is found to be the superposition of the emission from the individual double heterostructures that were grown separately.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett., 69, 4056 (1996).Google Scholar
3. Roberts, J. C., Mcintosh, F. G., Boutros, K. S., Bedair, S. M., Moussa, M., Piner, E. L., He, Y. and El-Masry, N. A., Mat. Res. Soc. Proc. 395, 273 (1996).Google Scholar
4. Boutros, K. S., Mcintosh, F. G., Roberts, J. C., Bedair, S. M., Piner, E. L. and El-Masry, N. A., Appl. Phys. Lett. 67, 1856 (1995).Google Scholar
5. Mcintosh, F. G., Boutros, K. S., Roberts, J. C., Bedair, S. M., Piner, E. L. and El-Masry, N. A., Appl. Phys. Lett. 68, 40 (1996).Google Scholar
6. Piner, E. L., He, Y. W., Boutros, K. S., Mclntosh, F. G., Roberts, J. C., Bedair, S. M., and El-Masry, N. A., Mat. Res. Soc. Symp. Proc. 395, 307 (1996).Google Scholar