Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:57:21.848Z Has data issue: false hasContentIssue false

Stabilization Mechanisms in Multiwalled Peapods

Published online by Cambridge University Press:  01 February 2011

Roberto Scipioni
Affiliation:
[email protected], ICYS, NIMS, Japan, ICYS, NIMS, Japan, Namiki 1-1,, Tsukuba, MD, 305-0044, Japan
Atsushi Oshiyama
Affiliation:
[email protected], University of Tokyo, Applied Physics, Tokyo, N/A, Japan
Takahisa Ohno
Affiliation:
[email protected], National Institute for Materials Science, Computational Materials Science, Tsukuba, N/A, Japan
Get access

Abstract

We discuss the energetics of Double walled Carbon nanotubes (DWCNT) peapods as compared to their single walled (SWNCNT) counterparts. We show that filling DWCNT with C60 fullerenes is energetically more favourable than SWNTs. Essentially two mechanisms are responsible for this phenomenon: 1] the interalyer state between the tubes which acts as repository of charge, 2] The Van der Waals interactions with the outer tubes. We discuss in some details the first effect using pseudopotential DFT, LDA first principles simulations for the two peapods C60@(15,0) and C60@(15,0)-(24,0)

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iijima, S., Nature 354, 56 (1991).Google Scholar
[2] Kroto, K., Science 242, 1139 (1988).Google Scholar
[3] Smith, B. W., Mothiou, M. and Luzzi, D. E., Nature, 396, 323 (1998).Google Scholar
[4] Okada, S., Saito, S. and Oshiyama, A., Phys. Rev. Lett. 86, 17 3835 (2001).Google Scholar
[5] Dubay, G., Kresse, G., Phys. Rev. B, 70 165424 (2004).Google Scholar
[6] Okada, S., Otani, M. and Oshiyama, A., Phys. Rev. B 67, 205411 (2003).Google Scholar
[7] Okada, S., Otani, M. and Oshiyama, A., Phys. Rev. B 68, 125424 (2003).Google Scholar
[8] Khlobystov, A. et al. Appl. Phys. Lett., 84, 792 (2004).Google Scholar
[9] Khlobystov, A. et al. , Phys. Rev. Lett. 92, 24, 245507 (2004).Google Scholar
[10] Qiu, H. et al. , Solid State Comm. 137, 654 (2006).Google Scholar
[11] Ning, G. et al. , Chem. Phys. Lett. 441, 94 (2007).Google Scholar
[12] See http://www.rss21.iis.u-tokyo.ac.jp/en/Google Scholar
[13] Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
[14] Miyamoto, Y. et al. , Phys. Rev. B 65, 041402(R) (2001).Google Scholar
[15] Girifalco, L. A. and Hodak, M., Phys. Rev. B, 65, 125404 (2002).Google Scholar
[16] Hasegawa, M. and Nishidate, K., Phys. Rev. B, 70, 205431 (2004).Google Scholar
[17] Kohn, W. et al. , Phys. Rev. Lett., 80, 4153 (1998).Google Scholar
[18] Chakarova, S. D. et al. , Phys. Rev. Lett. 96, 146107 (2006).Google Scholar
[19] Ortmann, F. et al. , Phys. Rev. B 73, 205101 (2006).Google Scholar
[20] Wu, X. et al. , J. Chem. Phys. 115, 8748 (2001).Google Scholar
[21] Song, W. et al. , Chem. Phys. Lett. 414, 429 (2005).Google Scholar
[22] Saito, R. et al. , Phys. Rev. B 46, 1804 (1992).Google Scholar