Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-09T11:36:24.127Z Has data issue: false hasContentIssue false

The Stability of Metals in the Atmosphere: New Chemical Insights to Old Problems

Published online by Cambridge University Press:  21 February 2011

T.E. Graedel*
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The stability of metals (or lack thereof) upon exposure to the indoor or outdoor atmosphere places strong constraints upon many of their uses, including uses in advanced technologies. Two recent developments permit increased understanding of the processes that occur: a detailed knowledge of the chemical constitution of indoor and outdoor atmospheres and of precipitation, and extensive analytical studies of the corrosion layers of degraded metals. Among the insights revealed from these perspectives are (1) the participation in materials degradation of the sulfuric and nitric acids in small aerosol particles and in precipitation; (2) the presence of organic acid anions within corrosion films, revealing interactions with atmospheric formic, acetic, and oxalic acids; (3) the participation of dissolved hydrogen peroxide in the passivation or dissolution of the surface layers of metals; and (4) the frequent occurrence of insoluble mixed salts of hydroxide and either sulfate, chloride, or carbonate anions in the corrosion layers of many metals, suggesting that the rates of formation and dissolution of such minerals may be limiting steps in many stabilization or degradation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Foley, R.T., J. Electrochem. Soc., 122, 1493 (1975).Google Scholar
2. Warneck, P., in Chemistry of Multiphase Atmospheric Systems, edited by Jaeschke, W., NATO ASI Series, Vol. G6 (Springer-Verlag, Berlin, 1986), p. 473.Google Scholar
3. Graedel, T.E., Weschler, C J., and Sinclair, J.D., In preparation (1988).Google Scholar
4. Schwartz, S.E., in Chemistry of Multiphase Atmospheric Systems, edited by Jaeschke, W., NATO ASI Series, Vol. G6 (Springer-Verlag, Berlin, 1986), p. 415.Google Scholar
5. Graedel, T.E., J. Electrochem. Soc., 133, 2476 (1986).CrossRefGoogle Scholar
6. Galloway, J.N. and Likens, G.E., Atmos. Environ., 15, 1081 (1981).Google Scholar
7. Committee on Monitoring and Assessment of Trends in Acid Deposition, Acid Deposition: Long-Term Trends (National Academy Press, Washington, D.C., 1986).Google Scholar
8. Keene, W.C. and Galloway, J.N., Atmos. Environ., 18, 2491 (1984).CrossRefGoogle Scholar
9. Pauling, L., General Chemistry, 2nd Edition (W.H. Freeman, San Francisco, 1954), p. 340.Google Scholar
10. Benarie, M. and Lipfert, F.L., Atmos. Environ., 20, 1947 (1986).Google Scholar
11. Keene, W.C. and Galloway, J.N., Tellus, 40B, in press (1988).CrossRefGoogle Scholar
12. Graedel, T.E., McCrory-Joy, C., Franey, J.P., J. Electrochem. Soc., 133, 452 (1986).Google Scholar
13. Graedel, T.E. and McGill, R., Environ. Sci. Technol., 20, 1093 (1986).Google Scholar
14. Muller, A J. and McCrory-Joy, C., Corros. Sci., 27, 695 (1987).Google Scholar
15. Nassau, K., Gallagher, P.K., Miller, A.E., Graedel, T.E., Corros. Sci., 27, 669 (1987).Google Scholar
16. Clarke, S.G., and Longhurst, E.E., J. Appl. Chem. Lond., 11, 435 (1961).Google Scholar
17. Kok, G.L., Darnall, K.R., Winer, A.M., Pitts, J.N. Jr., and Gay, B.W., Environ. Sci. Technol., 12, 1077 (1978).CrossRefGoogle Scholar
18. Zika, R., Saltzman, E., Chameides, W.L., and Davis, D.D., J. Geophys. Res., 87, 5015 (1982).Google Scholar
19. Raynor, G.S., Smith, M E., and Singer, I.A., J. Air Pollut. Contr. Assoc., 24, 586 (1974).Google Scholar
20. Petrova, T.I., Kharitonova, N.L., and Popova, A.I., Tr. Mosk. Energ. Inst., 575, 86 (1982) (CA 99: 144018d).Google Scholar
21. Moskvin, L.N., Efimov, A.A., Teterin, V.F., and Tomilov, S.B., Teploenergetika (Moscow), (9), 12 (1982) (CA 98: 76317c).Google Scholar
22. Mayne, J.E.O., and Burkill, J.A., Br. Corros. J., 21, 221 (1986).Google Scholar
23. Marsh, G.P., KJ. Taylor, Bryan, G., and Worthington, S.E., Corros. Sci., 26, 971 (1986).CrossRefGoogle Scholar
24. Garrels, R.M., Geochim. Cosmochim. Acta, 5, 153 (1954).CrossRefGoogle Scholar
25. Van Valin, C.C., Luria, M., Ray, J.D., Gunter, R.L., Wellman, D.L., and Boatman, J.F., EOS-Trans. AGU, 68, 1212 (1987).Google Scholar
26. Graedel, T.E., J. Electrochem. Soc., 135, 1035 (1988).Google Scholar
27. Weiss, J., Adv. Catal., 4, 343 (1952).Google Scholar
28. Ono, Y., Matsumura, T., Kitajima, N., Fukuzumi, S.-I., J. Phys. Chem. 81, 1307 (1977).Google Scholar
29. Chameides, W.L. and Davis, D.D., Nature, 304, 427 (1983).Google Scholar
30. Graedel, T.E., Mandich, M.L., CJ. Weschler, J. Geophys. Res., 91, 5205 (1986).Google Scholar
31. Czandema, A.W., J. Phys. Chem., 68, 2765 (1964).CrossRefGoogle Scholar
32. Stelson, A.W. and Seinfeld, J.H., Environ. Sci. Technol., 15, 671 (1981).CrossRefGoogle Scholar
33. Friel, J.J., Corrosion, 42, 422 (1986).Google Scholar
34. Bassett, H. and Goodwin, T.H., J. Chem. Soc. (Lond.), 1949, 2239.Google Scholar
35. Genin, J.M.R., Rezel, D., Bauer, Ph., Olowe, A., Beral, A., in Electrochemical Methods in Corrosion Research, edited by Duprat, M., Materials Science Forum, Vol.8 (Trans Tech Publication Ltd., Switzerland, 1986), p. 477.Google Scholar