Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:53:29.805Z Has data issue: false hasContentIssue false

Stability of Magnetic States in Patterned Materials

Published online by Cambridge University Press:  21 March 2011

Martha Pardavi-Horvath*
Affiliation:
The George Washington University, Department of Electrical and Computer Engineering, Washington, D.C. 20052, U.S.A.
Get access

Abstract

The stability of the individual elements of a two-dimensional (2D) regular array of single domain particles is investigated. The variance in the statistical distribution of up- and down switching fields of the elements leads to premature switching for the low coercivity particles, and incomplete overwriting for the high end of the distribution. The distribution of the interaction fields from surrounding elements on a 2D array depends the saturation magnetization of the elements, their packing density, and the recorded information. The non-ellipsoidal shape of the elements leads to reduced switching fields as a result of non-collinear magnetization around the corners and edges. The thermal stability of 2D arrays, switching by (incoherent) rotation of the magnetization, is enhanced compared to bulk/contiguous media, due to the lack of low energy barrier domain wall motion processes. However due to the fast decrease of the anisotropy, stability at elevated temperatures is still a problem. Experimental data for a model 2D square array of single crystalline, strongly uniaxial, single domain garnet particles illustrate the effects on stability of statistics, shape, and thermal excitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ganesan, S., Park, C. M., Hattori, K., Park, H. C., White, R. L., Koo, H. and Gomez, R. D., IEEE Trans. Magn., 36, 2987 (2000).Google Scholar
2. Martin, Jose I., Vicent, Jose L., Costa-Kramer, Jose L., Menendez, L., Cebollada, Alfonso, Anguita, Jose V., and Briones, Fernando, IEEE Trans. Magn., 36, 3002 (2000).Google Scholar
3. Ross, C. A., Savas, T. A., Smith, H. I. and Hwang, M., IEEE Trans. Magn., 35, 3781 (1999).Google Scholar
4. Stoner, C. and Wohlfarth, E. P., Phil. Trans. Roy. Soc. London, A420,.599, (1948).Google Scholar
5. Pardavi-Horvath, M. and Vertesy, G., IEEE Trans. Magn., 30, 124 (1994).Google Scholar
6. Mayergoyz, I.D., Mathematical Models of Hysteresis, Berlin, (Springer Verlag, 1991)Google Scholar
7. Torre, E. Della, Magnetic Hysteresis, (IEEE Press, 1999).Google Scholar
8. Pardavi-Horvath, M., “Switching properties of a regular two-dimensional array of small uniaxial particlesIEEE Trans. Magn., 32, 4458 (1996).Google Scholar
9. Pardavi-Horvath, M., Zheng, Guobao, Vertesy, G. and Magni, A., IEEE Trans. Mag., 32, 4469 (1996).Google Scholar
10. Pardavi-Horvath, M., J. Magn. Magn. Mater., 177–181, 213 (1998).Google Scholar
11. Yan, Y. D. and Torre, E. Della, J.Appl. Phys., 67, 5370 (1990).Google Scholar
12. Pardavi-Horvath, M., Zheng, Guobao, Vertesy, G. and Magni, A., IEEE Trans. Magn., 32, 4469 (1996).10.1109/20.538900Google Scholar
13. Joseph, R. I. and Schloemann, E., J. Appl. Phys., 36, 1579 (1965).Google Scholar
14. Huang, Xiaohua and Pardavi-Horvath, M., IEEE Trans. Magn., 32, 4180 (1996).Google Scholar
15. Pardavi-Horvath, M. and Zheng, Guobao, “Inhomogeneous internal field distribution in planar microwave ferrite devices” In “Nonlinear Microwave signal processing: Towards a new range of Devices”, Ed. Marcelli, R., Ch. 3. (Kluwer., Amsterdam, 1996) pp.4165 Google Scholar
16. Pardavi-Horvath, Martha, Yan, Jijin and Peverley, J. Roger, IEEE Trans. Magn., (2001) in press Google Scholar
17. Usov, N. A. and Peschany, S. E., J. Magn. Magn. Mater., 135, 111 (1994).Google Scholar
18. Rave, W., Ramstöck, K. and Hubert, A., J. Magn. Magn. Mater., 183, 329 (1998).Google Scholar
19. Pardavi-Horvath, M., Vertesy, G., Keszei, B., Vertesy, Z., and McMichael, R. D., IEEE Trans. Magn., 35, 3871, (1999).Google Scholar
20. Pardavi-Horvath, M., J. Magn. Magn. Mater., 198–199, 219 (1999).Google Scholar
21. Stinnett, S. M., Doyle, W. D., Flanders, P. J. and Dawson, C., IEEE Trans. Magn., 34, 1828, (1998); S. M. Stinnett, W. D. Doyle, IEEE Trans. Magn., 36, 2456 (2000 ).Google Scholar
22. Jamet, J.-P., Lemerle, S., Meyer, P., Ferre, J., Bartenlian, B., Bardou, N., Chappert, C., Veillet, P., Rousseaux, F., Decanini, D. and Launois, H.,Phys. Rev. B, 57, 14320 (1998).Google Scholar
23. Pardavi-Horvath, M., Vertesy, G., Keszei, B. and Vertesy, Z., J. Appl. Phys., 87, 7025 (2000).Google Scholar
24. Pardavi-Horvath, Martha, Vertesy, Gabor, and Hernando, Antonio, IEEE Trans. Mag., (2001) in press. Google Scholar