Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:21:57.406Z Has data issue: false hasContentIssue false

The Stability of Icosahedral Cd-Yb

Published online by Cambridge University Press:  01 February 2011

Günter Krauss
Affiliation:
Laboratory of Crystallography, Department of Materials, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
Sofia Deloudi
Affiliation:
Laboratory of Crystallography, Department of Materials, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
Andrea Steiner
Affiliation:
Laboratory of Crystallography, Department of Materials, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
Walter Steurer
Affiliation:
Laboratory of Crystallography, Department of Materials, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland
Amy R. Ross
Affiliation:
Ames Laboratory, Ames, IA, USA
Thomas A. Lograsso
Affiliation:
Ames Laboratory, Ames, IA, USA
Get access

Abstract

The stability of single-crystalline icosahedral Cd-Yb was investigated using X-ray diffraction methods in the temperature range 20 K ≤ T ≤ 900 K at ambient pressure and from ambient temperature to 873 K at about 9 GPa. Single-crystals remain stable at low temperatures and in the investigated HP-HT-regime. At high temperatures and ambient pressure, the quasicrystal decomposes. The application of mechanical stress at low temperatures yields to the same decomposition, the formation of Cd. A reaction of icosahedral Cd-Yb with traces of oxygen or water causing the decomposition seems reasonable, but a low-temperature instability of this binary quasi-crystal cannot be ruled out totally.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, A.P., Guo, J.Q., Abe, E., Takakura, H., Sato, T.J., Nature 408, 537 (2000).Google Scholar
2. Massalski, T.B., Okamoto, H., Subramanian, P.R., Kacprzak, L., Binary Alloy Phase Diagrams, ASM International (1990).Google Scholar
3. Jiang, J.Z., Jensen, C.H., Rasmussen, A.R., Gerward, L., Appl. Phys. Lett. 78, 1856 (2001).Google Scholar
4. Tamura, R., Murao, Y., Takeuchi, S., Ichihara, M., Isobe, M., Ueda, Y., Jpn. J. Appl. Phys. 41, L524 (2002).Google Scholar
5. Muro, Y., Sasakawa, T., Suemitsu, T., Takabatake, T., Tamura, R., Takeuchi, S., Jpn. J. Appl. Phys. 41, 3787 (2002).Google Scholar
6. Watanuki, T., Sato, T.J., Tsai, A.P., Shimomura, O., Acta Cryst. A58 (Suppl.) C179 (2002).Google Scholar
7. Estermann, M., Reifler, H., Steurer, W., Filser, F., Kocher, P., Gauckler, L.J., J. Appl. Cryst. 32, 833 (1999).Google Scholar
8. Messerschmidt, M., Meyer, M., Luger, P., J. Appl. Cryst. 36, 1452 (2003).Google Scholar
9. Anderson, O.L., Isaak, D.G., Yamamoto, S., J. Appl. Phys. 65, 1534 (1989).Google Scholar
10. Estermann, M.A., Steurer, W., Phase Transit. 67, 165 (1998).Google Scholar