Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:16:55.008Z Has data issue: false hasContentIssue false

Stability of Cubic Zirconia in a Granitic System Under High Pressure & Temperature

Published online by Cambridge University Press:  01 February 2011

Fergus G.F. Gibb
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
Boris E. Burakov
Affiliation:
Laboratory of Applied Mineralogy and Radiogeochemistry, The V.G. Khlopin Radium Institute, 28, 2-nd Murinskiy Ave., St. Petersburg, 194021, Russia.
Kathleen J. Taylor
Affiliation:
Department of Geography, University of Sheffield, Winter Street, Sheffield S10 2TN, UK.
Yana Domracheva
Affiliation:
Laboratory of Applied Mineralogy and Radiogeochemistry, The V.G. Khlopin Radium Institute, 28, 2-nd Murinskiy Ave., St. Petersburg, 194021, Russia.
Get access

Abstract

Cubic zirconia is a well known, highly durable material with potential uses as an actinide host phase in ceramic waste forms and inert matrix fuels and in containers for very deep borehole disposal of some highly radioactive wastes. To investigate the behaviour of this material under the conditions of possible use, a cube of ∼ 2.5 mm edge was made from a single crystal of yttriastabilized cubic zirconia doped with 0.3 wt.% CeO2. The cube was enclosed in powdered granite within a gold capsule and a small amount of H2O added before sealing. The sealed capsule was held for 4 months in a cold-seal pressure vessel at a temperature of 780°C and a pressure 150 MPa, simulating both the conditions of a deep borehole disposal involving partial melting of the host rock and the conditions under which the actinide waste form might be encapsulated in granite prior to disposal. At the end of the experiment the quenched, largely glassy, sample was cut into thin slices and studied by optical microscopy, EMPA, SEM and cathodoluminescence methods. The results show that no corrosion of the zirconia crystal or reaction with the granite melt occurred and that no detectable diffusion of elements, including Ce, in or out of the zirconia took place on the timescale of the experiment. Consequently, it appears that cubic zirconia could perform most satisfactorily as both an actinide host waste form for encapsulation in solid granite for very deep disposal and as a container material for deep borehole disposal of highly radioactive wastes (HLW), including spent fuel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Carrol, D.F., J. Am. Ceram. Soc., 46, 195–196 (1963)Google Scholar
2 Heimann, R.B. and Vandergraaf, T.T., J. Mater. Science Letters, 7, 583585 (1988).Google Scholar
3 Burakov, Anderson B. E., and Vasiliev, V.G., Proc. Intern. Conf. SAFE WASTE'93, 13-18/06/1993, Avignon, France, Vol. 2, 2933 (1993).Google Scholar
4 Kuramoto, K. Makino, Y. Yanagi, T. Muraoka, S. and Ito, Y. Proc. Intern. Conf. GLOBAL’95, Versailles, France, 11-14/09/1995, Vol. 2, 18381845 (1995).Google Scholar
5 Furuya, H. Muraoka, S. and Muromura, T. Disposal of Weapon Plutonium ed. Merz, E.R. and C.Walter, E. Kluwer Academic Publishers, Dordrecht, 107121 (1996).Google Scholar
6 Burakov, B. E., Anderson, E. E., Galkin, B.Ya., Starchenko, V.A. and Vasiliev, V.G., Disposal of Weapon Plutonium ed. Merz, E.R. and Walter, C.E., Kluwer Academic Publishers, Dordrecht, 8589 (1996).Google Scholar
7 Degueldre, C. Heimgartner, P. Ledergerber, G. Sasajima, N. Hojou, K. Muromura, T. Wang, L. Gong, W. and Ewing, R, Mat. Res. Soc. Symp. Proc., Vol. 439, 625 (1997).Google Scholar
8 Burakov, B.E. and Anderson, E.B., Proc. 2nd Intern. Symp. NUCEF'98, JAERI-Conf.99-004 (Part I), 295306 (1998).Google Scholar
9 Kinoshita, H. Kuramoto, K. Uno, M. Yamanaka, S. Mitamura, H. and Banba, T. Proc. 2nd Intern. Symp. NUCEF'98, JAERI-Conf.99-004 (Part I), 307326 (1998).Google Scholar
10 Sickafus, K.E., Wetterland, C. Baker, N.P., Yu, N. Devanathan, R. Nastasi, M. and Bordes, N. J. Mater. Sci. Engin., A 253, 7885 (1998).Google Scholar
11 Gong, W.L., Lutze, W. and Ewing, R.C., Mat. Res. Soc. Symp. Proc., Vol. 556, 6370 (1999).Google Scholar
12 Sickafus, K.E., Hanrahan, R.J., Am. Ceram., Soc. Bull., Vol. 78, No 1 (1999).Google Scholar
13 Sickafus, K.E., Matzke, Hj., Hartman, Th., Yasuda, K. Valdez, J.A., Chadak, P. Nastasi, M. and Verrall, V.A., J. Nucl. Mat., 274, 6677 (1999).Google Scholar
14 Gong, W.L., Lutze, W. and Ewing, R.C., J. Nucl. Mat., 277, 239249 (2000).Google Scholar
15 Timofeeva, L.F., Nadytko, B.A., Orlov, V.K., Malyukov, E.E., Molomin, V.I., Zhmak, V.A., Semova, E.A. and Shishkov, N.V., J. Nucl. Science and Tech., Suppl. 3, 729732 (2002).Google Scholar
16 Wang, L.M., Wang, S.X. and Ewing, R.C., Philos. Mag. Lett., Vol. 80, 341347 (2000).Google Scholar
17 Burakov, B. Anderson, E. Yagovkina, M. Zamoryanskaya, M. and Nikolaeva, E. J. Nucl. Science and Tech., Suppl. 3, 733736 (2002).Google Scholar
18 Burakov, B.E. and Anderson, E.B., CD-ROM Proc. Intern. Conf. Waste Management'02, 24-28/02/2002, Tucson, AZ, USA (2002).Google Scholar
19 Kinoshita, H. Kuramoto, K. Uno, M. Yamanaka, S. Mitamura, H. and Banba, T. Mat. Res. Soc. Symp. Proc., Vol. 608, 393398 (2000).Google Scholar
20 Burakov, B.E. and Anderson, E.B., Excess Weapons Plutonium Immobilization in Russia ed. Jardine, J.L. and Borisov, G.B., UCRL-ID-138361, Proc. Meeting for Coordination and Review of Work, St. Petersburg, Russia, 1-4/11/1999, 167-179 and 251252 (2000).Google Scholar
21 Burakov, B.E., Anderson, E.B., Zamoryanskaya, M.V., Yagovkina, M.A. and Nikolaeva, E.V., Mat. Res. Soc. Symp. Proc., Vol. 713, 333336 (2002).Google Scholar
22 Burakov, B. and Anderson, E. CD-ROM Proc. 8th Intern. Conf. ICEM’01, 30/09-04/10/2001, Bruges, Belgium, sess. 39 (2001).Google Scholar
23 Yamashita, T. Kuramoto, K. Nakada, M. Yamazaki, S. Sato, T. and Matsui, T., J. Nucl. Science and Tech., Suppl. 3, 585591 (2002).Google Scholar
24 Burakov, B.E., Yagovkina, M.A., Zamoryanskaya, M.V., Kitsay, A.A., Garbuzov, V.M., Anderson, E.B. and Pankov, A.S., Mat. Res. Soc. Symp. Proc., Vol. 807, 213217 (2004).Google Scholar
25 Raison, P.E., Haire, R.G. and Assefa, Z. J. Nucl. Science and Tech., Suppl. 3, 725728 (2002).Google Scholar
26 Chapman, N. and Gibb, F. Radwaste Solutions, 10/4, 2637 (2003).Google Scholar
27 Gibb, F. Imperial Engineer (Royal School of Mines, London), 3, 1113 (2005)Google Scholar
28 M.I.T., The Future of Nuclear Power: An Interdisciplinary MIT Study, Massachusetts Institute of Technology, Cambridge (2003).Google Scholar
29 Gibb, F.G.F., Travis, K.P., McTaggart, N.A., Burley, D. and Hesketh, K.W., Nuclear Technology, [In Press (2007)].Google Scholar
30 Gibb, F.G.F., J. Geol. Soc., 157, 2737 (2000).Google Scholar
31 Gibb, F.G.F. and Atrill, P.G., Geology, 31, 657660 (2003).Google Scholar
32 Lumpkin, G.R., Elements, 2, 365372 (2006).Google Scholar
33 Farnan, I. Cho, H. and Weber, W.J., Nature, 445, 190193 (2007).Google Scholar
34 Ewing, R.C., Haaker, R.F. and Lutze, W, Leachability of Zircon as a Function of Alpha Dose, in Lutze, W. (Ed.) Scientific basis for Nuclear Waste Management V, 389-397. Elsevier, New York (1982).Google Scholar
35 Geisler, T. Burakov, B. Yagovkina, M. Garbuzov, V. Zamoryanskaya, M. Zirlin, V. and Nikolaeva, L.. J. Nucl. Mat., 336, 2230 (2005).Google Scholar
36 Attrill, P.G. and Gibb, F.G.F., Lithos, 67, 103117 (2003).Google Scholar
37 Attrill, P.G. and Gibb, F.G.F., Lithos, 67, 119133 (2003)Google Scholar
38 Chappel, B.W. and White, A.J.R., Pacific Geology, 8, 173174 (1974).Google Scholar
39 Zamoryanskaya, M.V. and Burakov, B.E., Neorg. Mater., Vol. 36, No. 8, 10111015, in Russian (2000).Google Scholar
40 Zamoryanskaya, M.V., Konnikov, S.G. and Zamoryanskii, A.N., Instruments and Experimental Techniques, Vol. 47, No. 4, 477483 (2004).Google Scholar
41 Taylor, K. and Gibb, F. Proc. University Research Alliance Conf., Sellafield, p.5 (2004).Google Scholar