No CrossRef data available.
Article contents
Stability and Relaxation of Point Defects in amorphous silicon
Published online by Cambridge University Press: 25 February 2011
Abstract
We have used molecular-dynamics to investigate the stability and relaxation of point defects — vacancies and interstitials — in a model of amorphous silicon, with the interactions between atoms described by the Stillinger-Weber empirical potential. The annihila-tion of point defects has been proposed as an important mechanism by which relaxation proceeds in amorphous silicon. Starting with a Wooten-Winer-Weaire model of a-Si, we “manually” create vacancies in the structure by removing a number of randomly-selected four-fold coordinated atoms. The system is then allowed to relax. Our calculations reveal unambiguously that, of a number of vacancies introduced in the model at low temperature, roughly a third are stable; these anneal out upon heating at room temperature. The vacancies seem, in most cases, to consist of a relatively large empty volume bounded by four atoms of which at least one is undercoordinated. Our study of interstitials seems to indicate that they diffuse through a “jump-and-bump” process, eventually annihilating when a large enough, properly coordinated, vacant volume is encountered.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993