Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T14:26:42.382Z Has data issue: false hasContentIssue false

Sr(Ti, Fe)O3-δ Exhaust Gas Sensors

Published online by Cambridge University Press:  01 February 2011

Thomas Schneider
Affiliation:
Institut für Werkstoffe der Elektrotechnik IWE, Universität Karlsruhe (TH), Adenauerring 20b, 76131 Karlsruhe, Germany
Christoph Peters
Affiliation:
Institut für Werkstoffe der Elektrotechnik IWE, Universität Karlsruhe (TH), Adenauerring 20b, 76131 Karlsruhe, Germany
Stefan Wagner
Affiliation:
Institut für Werkstoffe der Elektrotechnik IWE, Universität Karlsruhe (TH), Adenauerring 20b, 76131 Karlsruhe, Germany
Wolfgang Menesklou
Affiliation:
Institut für Werkstoffe der Elektrotechnik IWE, Universität Karlsruhe (TH), Adenauerring 20b, 76131 Karlsruhe, Germany
Ellen Ivers-Tiffée
Affiliation:
Institut für Werkstoffe der Elektrotechnik IWE, Universität Karlsruhe (TH), Adenauerring 20b, 76131 Karlsruhe, Germany
Get access

Abstract

Sr(Tix, Fe1-x)O3-δ solid solutions were found to change their temperature coefficient of resistance (TCR) from negative to positive as iron increasingly substitutes for titanium, with the TCR tending towards zero at × = 0.35. This composition, Sr(Ti0.65Fe0.35)O3-δ thus shows temperature independent characteristic.

For the development of a planar type sensing element for automotive applications, Sr(Ti, Fe)O3-δ has to be applied as a thick film. To confirm the sensor characteristic temperature independence (at T = 750…950 °C, p O2 = 10−5…1 bar) and fast response times (t90 = 6.5 ms at 900 °C), both key issues of Sr(Ti, Fe)O3-δ, thick film sensors have to be maintained over the entire lifetime. In this work, the structural and electrical properties of the sensor are investigated with regard to the chemical stability of the sensing element.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ivers-Tiffée, E., Härdtl, K.H., Menesklou, W., and Riegel, J., Electrochimica Acta, 47, 807 (2001).Google Scholar
[2] Moos, R., Menesklou, W., Schreiner, H.-J., and Härdtl, K.H., Sensors and Actuators, B 67, 178 (2000).Google Scholar
[3] Menesklou, W., Schreiner, H.-J., Härdtl, K.H., and Ivers-Tiffée, E., Sensors and Actuators, B 59, 184 (1999).Google Scholar
[4] Menesklou, W., Schreiner, H.-J., Moos, R., Härdtl, K.H., and Ivers-Tiffée, E., in Materials for Smart Systems III, Wun-Fogle, M., Uchino, K., Ito, Y., and Gotthardt, R., Editors, Materials Research Society Symp. Proceedings 604, p. 305, Warrendale PA (2000).Google Scholar
[5] Riegel, J., Neumann, H., and Wiedenmann, H.-M., Solid State Ionics, 152–153, 783 (2002).Google Scholar
[6] Yokokawa, H., Yamauchi, S., and Matsumoto, T., Thermochimica Acta, 245, 45 (1994); see http://www.kagaku.com/malt/index.html. Google Scholar
[7] Yokokawa, H., Annu. Rev. Mater. Res., 33, 581 (2003).Google Scholar
[8] Yokokawa, H., Journal of Phase Equilibria, 20, 258 (1999).Google Scholar
[9] Yokokawa, H., Yamauchi, S., and Matsumoto, T., Calphad, 26, 155 (2002).Google Scholar
[10] Bosch, , Kraftfahrtechnisches Taschenbuch, 23rd edition, Vieweg-Verlag, Braunschweig (1999), in German.Google Scholar
[11] Moos, R., Rettig, F., Hürland, A., and Plog, C., Sensors and Actuators, B 93, 43 (2003).Google Scholar
[12] Schneider, Th., Yokokawa, H. and Ivers-Tiffée, E.. In: T. Ramanarayanan et al., Proc. 204th Meeting of the Electrochem. Soc. Ionic and Mixed Conducting Ceramics V, acceptedGoogle Scholar