Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:46:37.456Z Has data issue: false hasContentIssue false

Sr-Diffusion in Ce0.8Gd0.2O2-δ Layers for SOFC Application

Published online by Cambridge University Press:  20 May 2013

Tabea Mandt
Affiliation:
Institut of Energy and Climate Research, IEK-3: Electrochemical Process Engineering; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Carsten Korte
Affiliation:
Institut of Energy and Climate Research, IEK-3: Electrochemical Process Engineering; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Uwe Breuer
Affiliation:
ZEA-3: Central Institute of Analytics; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Alexander Weber
Affiliation:
Jülich Centre for Neutron Science JCNS / Peter Grünberg Institute PGI, JCNS-2/PGI-4: Scattering Methods; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Mirko Ziegner
Affiliation:
IEK-2: Material Structure and Properties; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Sven Uhlenbruck
Affiliation:
IEK-1: Material Synthesis and Manufacturing Processing; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Norbert Menzler
Affiliation:
IEK-1: Material Synthesis and Manufacturing Processing; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Detlef Stolten
Affiliation:
Institut of Energy and Climate Research, IEK-3: Electrochemical Process Engineering; Forschungszentrum Jülich GmbH, Leo-Brandt Straße 1, 52425 Jülich, Germany
Get access

Abstract

In this study Sr2+ diffusion along Ce0.8Gd0.2O2-δ (CGO) grain boundaries is investigated. Model samples with different grain boundary densities were prepared by different thin film tech-niques. Diffusion experiments were performed by annealing and subsequent ToF-SIMS analysis. The activation energy of grain boundary diffusion is determined as 492 kJ/mol, which is 2/3 of the bulk diffusion activation energy 739 kJ/mol, deduced from literature data [1-5].

The formation of an electrical blocking SrZrO3 layer due to grain boundary diffusion of Sr2+ through a CGO barrier layer may limit the long term stability of Solid Oxide Fuel Cells based on Zr0.85Y0.15O2-δ electrolytes and La0.58Sr0.4Co0.2Fe0.8O3-δ cathodes. The grain boundary diffusivity and the CGO grain boundary density highly influence the kinetic of the SrZrO3 formation. Aim of this study is to gain data for a prediction of the maximum lifetime of a SOFC system, limited by the increasing cell resistivity due to SrZrO3 formation. Specifications for the CGO barrier layer preparation concerning grain boundary density are determined.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Izuki, M., Brito, M. E., Yamaji, K., et al. ., J. Power Sources, 196, 7232 (2011).CrossRefGoogle Scholar
Knibbe, R., Hauch, A., Hjelm, J., Ebbesen, S. D. and Mogensen, M., Green, 1, 141 (2011).CrossRefGoogle Scholar
Sakai, N., Kishimoto, H., Yamaji, K., et al. ., ECS Trans., 7, 389 (2007).CrossRefGoogle Scholar
Sakai, N., Kishimoto, H., Yamaji, K., et al. ., J. Electrochem. Soc., 154, B1331 (2007).CrossRefGoogle Scholar
Sakai, N., Yamaji, K., Horita, T., et al. ., 13th Symposium of SOFC Society of Japan (2004).Google Scholar
Menzler, N., Blum, L., Buchkremer, H., et al. ., Proc. Engin., 44, 407 (2012).CrossRefGoogle Scholar
de Haart, L. G. J. and Vinke, I. C., ECS Trans., 35, 187 (2011).CrossRefGoogle Scholar
Kindermann, L., Das, D., Nickel, H. and Hilpert, K., Solid State Ionics, 89, 215 (1996).CrossRefGoogle Scholar
Tu, H. Y., Takeda, Y., Imanishi, N. and Yamamoto, O., Solid State Ionics, 117, 277 (1999).CrossRefGoogle Scholar
Sønderby, S., Popa, P. L., Lu, J., et al. ., Adv. Energy Mater., 10.1002/aenm.201300003n/a (2013).Google Scholar
Mai, A., Haanappel, V., Uhlenbruck, S., et al. ., Solid State Ionics, 176, 1341 (2005).CrossRefGoogle Scholar
Jordan Escalona, N., Assenmacher, W., Uhlenbruck, S., et al. ., Solid State Ionics, 179, 919 (2008).CrossRefGoogle Scholar
Tietz, F., Fu, Q., Haanappel, V., et al. .k, Int. J. Appl. Ceram. Tec., 4, 436 (2007).CrossRefGoogle Scholar
Mishin, Y. M., Phys. Status Solidi A, 133, 259 (1992).CrossRefGoogle Scholar
Menzler, N. H., Tietz, F., Uhlenbruck, S., et al. ., J. Mater. Sci., 45, 3109 (2010).CrossRefGoogle Scholar
Mücke, R., Büchler, O., Bram, M., et al. ., J. Power Sources, 196, 9528 (2011).CrossRefGoogle Scholar
Uhlenbruck, S., Jordan, N., Sebold, D., et al. .r, Thin Solid Films, 515, 4053 (2007).CrossRefGoogle Scholar
Harrison, L. G., Trans. Faraday Soc., 57, 1191 (1961).CrossRefGoogle Scholar
Fisher, J. C., J. Appl. Phys., 22, 74 (1951).CrossRefGoogle Scholar
Gas, P., Beke, D. L. and Bernardino, J., Philos. Mag. Lett., 65, 133 (1992).CrossRefGoogle Scholar
Sommer, J. and Herzig, C., J. Appl. Phys., 72, 2758 (1992).CrossRefGoogle Scholar
Swaroop, S., Kilo, M., Argirusis, C., et al. ., Acta Mater., 53, 4975 (2005).CrossRefGoogle Scholar