Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:05:06.395Z Has data issue: false hasContentIssue false

Sputtering and Molecular Beam Epitaxy (MBE) Deposition of Magneto-Optical Materials

Published online by Cambridge University Press:  21 February 2011

Charles M. Falco
Affiliation:
Optical Sciences Center and Department of Physics, University of Arizona, Tucson, AZ 85721
Brad N. Engel
Affiliation:
Optical Sciences Center and Department of Physics, University of Arizona, Tucson, AZ 85721
Craig D. England
Affiliation:
Optical Sciences Center and Department of Physics, University of Arizona, Tucson, AZ 85721
Robert A. Van Leeuwen
Affiliation:
Optical Sciences Center and Department of Physics, University of Arizona, Tucson, AZ 85721
Get access

Abstract

Materials with anisotropies giving rise to perpendicular magnetization are important for optical data storage applications. However, the microscopic origin of the anisotropies is not well understood. It is now widely recognized that understanding the origin of surface and interface anisotropies is one of the most important problems in magnetism. Ultra-high vacuum deposition techniques allow the sequential deposition of layers of several elements with great regularity, and little interdiffusion and contamination at the interfaces. The microstructure of the resultant multilayer materials can vary from amorphous, or polycrystalline with only short range order, to high quality superlattices with long range structural coherence in all three dimensions. This paper gives an introduction to rare-earth/transitionmetal and transition-metal/transition-metal multilayers and superlattices. Sputtering and Molecular Beam Epitaxy (MBE) processes used to grow these materials are then described, as are the in situ and ex situ characterization techniques used to determine their electronic and physical structure, and to measure their magnetooptic properties. Some of the magnetic and magneto-optic properties of materials produced by sputtering and MBE related to optical data storage are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bate, G., IEEE Trans. Magn. MAG–23 156 (1987).Google Scholar
2. Suzuki, Y., Takayama, S., Kirino, F. and Ohta, N., IEEE Trans. Magn. MAG–23 2275 (1987).Google Scholar
3. Takagi, H., Tsunashima, S., and Uchiyama, S., J. Appl. Phys. 50, 1642 (1979)Google Scholar
4. Liu, C., Moog, E.R., and Bader, S.D., Phys. Rev. Lett. 60, 2422 (1988)Google Scholar
5. Beier, T., Pescia, D., Stampanoni, M., Vaterlaus, A., and Meier, F., Appl. Phys. A 47, 73 (1988)Google Scholar
6. Bennett, W.R., Person, D.C., and Falco, C.M., Topical Meeting on Optical Data Storage, Technical Digest Series 10, 127 (1987).Google Scholar
7. Sato, N., Habu, K., and Oyama, T., IEEE Trans. Magn. MAG–23, 2614 (1987).Google Scholar
8. Tiwald, T.E., Woolam, J.A. and Sellmyer, D.J., J. Appl. Phys. 63, 3215 (1988).Google Scholar
9. Shan, Z.S., Nafis, S., Aylesworth, K.D. and Sellmyer, D.J., J. Appl. Phys. 63, 3218 (1988).Google Scholar
10. Shan, Z.S. and Sellmyer, D.J., J. Appl. Phys. 64, 5745 (1988).Google Scholar
11. Sato, K., Kida, H., Katayama, T., Jap. J. App. Phys., 27, L237 (1988).Google Scholar
12. Katayama, T., Awano, H., and Nishihara, Y., J. Phys. Soc. Jpn. 55, 2539 (1986).Google Scholar
13. England, C.D., Person, D.C., Bennett, W.R., Reim, W. and Falco, C.M., presented at the 1989 MRS Spring Meeting, San Diego, CA, 1989. to be published).Google Scholar
14. Carcia, P. F., Meinhaldt, A. D., and Suna, A., Appl. Phys. Lett. 47, 178 (1985).Google Scholar
15. Chappert, C., Dang, K.Le, Beauvillian, P., Hurdequint, H., Renard, D., and Marliere, C., in Magnetic Thin Films, edited by Krishnan, R. (Editions de Physique, Paris, 1987), p. 56.Google Scholar
16. Broeder, F.J.A. den, Kuiper, D., Mosselaer, A.P. van de and Hoving, W., Phys. Rev. Lett. 60, 2771 (1988).Google Scholar
17. Carcia, Peter F., J. Vac. Sci. Technol. A5, 1975 (1987).Google Scholar
18. Lee, C.H., He, Hui, Lamelas, F., Vavra, W., Uher, C., and Clarke, Roy, Phys. Rev. Lett. 62, 653 (1989).Google Scholar
19. Krebs, J.J., Jonker, B.T., and Prinz, G.A., J. Appl. Phys. 63, 3467 (1988)Google Scholar
20. Weller, D., Reim, W., and Schrijner, P., IEEE Trans. Magn. 24, 2554 (1988).Google Scholar
21. Heinrich, B., Urquhart, K.B., Dutcher, J.R., Purcell, S.T., Cochran, J.F. and Arrott, A.S., J. Appl. Phys. 63, 3863 (1988).Google Scholar
22. Bennett, H.E. and Porteus, J.O., J. Opt. Soc. America 51, 123 (1961).Google Scholar
23. Sato, N., J. Appl. Phys. 59, 2514 (1986).Google Scholar
24. Meiklejohn, W.H., Luborsky, F.E., and Frishman, P.G., IEEE Trans. Magn. 23, 2272 (1987).Google Scholar
25. Noel, M.L., J. Phys. Rad. 15, 225 (1954).Google Scholar
26. Gradmann, U., J. Magn. Magn. Mat., 54–57, 733 (1986).Google Scholar
27. Bruno, P., J. Phys. F, 18, 1291 (1988).Google Scholar
28. Bennet, A.J. and Cooper, B.R., Phys. Rev. B 3, 1642 (1971).Google Scholar
29. Draaisma, H.J.G., Jonge, W.J.M. de, J. Appl. Phys. 64, 3610 (1988).Google Scholar
30. Gay, J.G., Richter, R., Phys. Rev. Lett. 56, 2728 (1986).Google Scholar
31. Draaisma, H.J.G., Broeder, F.J.A. den, Jonge, W.J.M. de, J. Appl. Phys. 63, 3479 (1988).Google Scholar