Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:35:11.471Z Has data issue: false hasContentIssue false

Sputter Deposition of Indium Nitride on The (111) Face of Elemental and Compound Semiconductors

Published online by Cambridge University Press:  25 February 2011

J. S. Morgan
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
T. J. Kistenmacher
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
W. A. Bryden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
S. A. Ecelberger
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
Get access

Abstract

The structure, morphology, and transport properties of thin films of InN grown on several cubic semiconductors has been studied as a function of substrate temperature. Films were deposited using rf-magnetron sputtering onto the (111) face of GaAs, Ge, Si and ZrO2. In general, the film structure is such that (00.1)InN parallels the (111) plane of the cubic substrate above some deposition temperature. The in-plane structural coherence duplicates the magnitude of the calculated lattice mismatch between InN and the substrate. Electrical transport properties for growth onto (111) ZrO2 were characterized by n-type carrier concentration and mobilities ranging up to 44 cm2 /Vsec. A morphology-induced decrease in electrical mobility is observed for deposition temperatures above 350°C, as shown by SEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noreika, A. J. and Ing, D. W., J. Appl. Phys. 39, 5578 (1968).Google Scholar
2. Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).Google Scholar
3. Murduck, J. M., Vicent, J., Schuller, I. K., and Kettersen, J. B., J. Appl. Phys. 62, 4216 (1987)Google Scholar
Murduck, J. M., Capone, D. W., Schuller, I. K., Foner, S., and Kettersen, J. B., Appl. Phys. Lett. 52, 504 (1988)Google Scholar
Bharda, R., Grimsditch, M., Murduck, J., and Schuller, I. K., Appl. Phys. Lett. 54, 1409 (1989).Google Scholar
4. Mizuta, M., Fujieda, S., Matsumoto, Y., and Kawamura, T., Jap. J. Appl. Phys. 25, L945 (1965)Google Scholar
Mochizuki, Y., Mizuta, M., Fujieda, S., and Matsumoto, Y., Appl. Phys. Lett. 55, 1318 (1989).Google Scholar
5. Sato, Y. and Sato, S., Jap. J. Appl. Phys. 28, L1641 (1989).Google Scholar
6. Kistenmacher, T. J., Dayan, D., Fainchtein, R., Bryden, W. A., Morgan, J. S., and Poehler, T. O., Proc. Mater. Res. Soc. 162, 573 (1990)Google Scholar
Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Poehler, T. O., J. Appl. Phys. 68, 1541 (1990)Google Scholar
Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., Dayan, D., Fainchtein, R., and Poehler, T. O., J. Mater. Res., submitted.Google Scholar
7. Read, M. H. and Hensler, D. H., Thin Solid Films 10, 123 (1972).Google Scholar
8. Buerger, M. J., The Precession Method in X-Ray Crystallography (Wiley, New York, 1964)Google Scholar
Nuffield, E. W., X-Rav Diffraction Methods (Wiley, New York, 1966).Google Scholar
9. Kistenmacher, T. J., Bryden, W. A., Wickenden, D. K., and Ecelberger, S. A., in these proceedings.Google Scholar