Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:18:28.732Z Has data issue: false hasContentIssue false

Spontaneous Imbibition of Liquids into Nanopores

Published online by Cambridge University Press:  26 February 2011

Patrick Huber
Affiliation:
[email protected], Saarland University, Department of Physics and Mechatronic Engineering, Building E 26, Room 3.23, P.O. Box 151150, Saarbruecken, N/A, 66041, Germany, +49 681 302 3944, +49 681 302 4676
Klaus Knorr
Affiliation:
[email protected], Saarland University, Department of Physics and Mechatronic Engineering, Germany
Andriy V. Kityk
Affiliation:
[email protected], Technical University of Czestochowa, Institute for Computer Science
Get access

Abstract

We present measurements on the spontaneous imbibition of water, a linear hydrocarbon (n-C16H34) and a liquid crystal (8OCB) into the pore space of monolithic, nanoporous Vycor glass (mean pore radius 5nm). Measurements of the mass uptake as a function of time, m(t), are in good agreement with the Lucas-Washburn - prediction typical of imbibition of liquids into porous hosts. The relative capillary rise velocities scale as expected from the bulk fluid parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Alava, M., Dubé, M., Rost, M., Advances in Physics 53, 83 (2004).Google Scholar
2 Urbakh, M., Klafter, J., Gourdon, D., Israelachvilli, J., Nature 430, 525 (2004);Google Scholar
Drake, J. M. and Klafter, J., Physics Today 43, 46 1990;Google Scholar
Granick, S., Zhu, Y. X., and Lee, H., Nature Materials 2 221 2003;Google Scholar
Gelb, L.D. and Hopkins, A.C., Nanoletters 2, 1281 2002.Google Scholar
3 Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005);Google Scholar
Megaridis, C. M., Yazicioglu, A. G., Libera, J. A., Gogotsi, Y., Physics of Fluids 14, L5 2002;Google Scholar
Supple, S., Quirke, N., Phys. Rev. Lett. 90, 214501 2003.Google Scholar
4 Levitz, P., Ehret, G., Sinha, S. K., Drake, J. M., J. Chem. Phys. 95, 6151 (1991).Google Scholar
5 Wallacher, D. and Knorr, K., Phys. Rev. B 63, 104202 (2001).Google Scholar
6 de Gennes, P. G., Brochard-Wyard, F., Quéré, D., Capillarity and Wetting Phenomena, Springer NY (2004).Google Scholar
7 Lucas, R., Kolloid, Z. 23, 15 (1918);Google Scholar
Washburn, E.W., Phys. Rev. 17, 273 1921.Google Scholar
8 Weast, R. C. and Astle, M. J., eds., Handbook of Chemistry and Physics, CRC Press, Florida (1981)Google Scholar
9 Small, D., The Physical Chemistry of Lipids, Plenum Press, NY (1986).Google Scholar
10 Jadzyn, J. and Czechowski, G., J. Phys.: Cond. Matter 13, L261 (2001).Google Scholar
11 Langevin, D., J. Physique 37, 901 (1976).Google Scholar
12 Zywocinski, A., Wieczorek, S. A., Stecki, J., Phys. Rev. A 36, 1901 (1987).Google Scholar
13 Raviv, U., Laurat, P., Klein, J., Nature 413, 51 (2001);Google Scholar
Israelachvili, J., McGuiggan, P. M., Homola, A. M., Science 240, 189 1988;Google Scholar
Ruths, M. and Granick, S., Langmuir 16, 8368 2000.Google Scholar
14 Abeles, B., Chen, L. F., Johnson, J. W., Drake, J. M., Isr. J. Chem. 31, 99 (1990);Google Scholar
Debye, P. and Cleland, R. L., J. Appl. Phys. 30, 843 1959.Google Scholar
15 Huber, P. and Knorr, K., Phys. Rev. B 60, 12657 (1999).Google Scholar