Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:55:50.091Z Has data issue: false hasContentIssue false

Spontaneous Formation and Stability of GaP Cage Structures: A Theoretical Prediction of a New Fullerene

Published online by Cambridge University Press:  21 March 2011

Francesco Buda
Affiliation:
Department of Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
Valentina Tozzini
Affiliation:
Istituto Nazionale per la Fisica della Materia and Scuola Normale Superiore, Piazza dei Cavalieri, 7 1–56126 Pisa, Italy
Annalisa Fasolino
Affiliation:
Research Institute for Materials, Institute of Theoretical Physics, University of Nijmegen, Toernooiveld, NL-6525ED Nijmegen, The Netherlands
Get access

Abstract

We report the spontaneous formation of a GaP fullerene cage in ab-initio Molecular Dynamics simulations starting from a bulk fragment. A systematic study of the geometric and electronic properties of neutral and ionized III-V (GaP, GaAs, AlAs, AIP) clusters suggests the stability of hetero-fullerenes formed by compounds with zincblend bulk structure. Our prediction is supported by several indicators: these clusters show closed electronic shells and relatively large energy gaps; the ratio between the cohesive energy per atom in the cluster and in the bulk is very close to the value found for carbon fullerenes of the same size; the clusters are thermally stable up to a temperature range of 1500–2000 K and they do not dissociate when ionized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldberg, D., Bando, Y., Stephan, O., and Kurashima, K., Appl. Phys. Lett. 73, 2441 (1998).Google Scholar
2. Parilla, P. A., Dillon, A. C., Jones, K. M., Riker, G., Schulz, D.L., Ginley, D.S. and Heben, M.J., Nature 397, 114 (1999).Google Scholar
3. Seifert, G., Fowler, P. W., Mitchell, D., Porezag, D., and Frauenheim, T.H., Chem Phys. Lett. 268, 352 (1997).Google Scholar
4. Jensen, F., and Toftlund, H., Chem Phys. Lett. 201, 89 (1993).Google Scholar
5. Blase, X., De Vita, A., Charlier, J-.C., and Car, R., Phys. Rev. Lett. 80, 1666, (1998).Google Scholar
6. Sun, M-L., Slanina, Z. and Lee, S-.L., Chem Phys. Lett. 233, 279 (1995).Google Scholar
7. Alexandre, S. S., Mazzoni, M. S. C., and Chacham, H., Appl. Phys. Lett. 75, 61 (1999).Google Scholar
8. Fowler, P. W., Rogers, K. M., Seifert, G., Terrones, M., and Terrones, H., Chem Phys. Lett 299, 359 (1999).Google Scholar
9. Tozzini, V., Buda, F., and Fasolino, A., Phys. Rev. Lett. 85, 4554 (2000).Google Scholar
10. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
11. Becke, A.D., Phys. Rev. A 38, 3098 (1988).Google Scholar
12. Perdew, J.P., Phys. Rev. B 33, 8822 (1986).Google Scholar
13. Ortiz, G., Phys. Rev. B 45, 11328 (1992).Google Scholar
14. Gonze, X., Stumpf, R., and Schemer, M., Phys. Rev. B 44, 8503 (1991).Google Scholar
15. Tassone, F., Mauri, F., and Car, R., Phys. Rev. B 50, 10561 (1994).Google Scholar
16. Kietzmann, H., Rochów, R., Ganteför, G., Eberhardt, W., Vietze, K., Seifert, G., and Fowler, P.W., Phys. Rev. Lett. 81, 5378 (1998).Google Scholar
17. Van Heijnsbergen, D., von Helden, G., Duncan, M. A. van Roij, A. J. A. and Meijer, G., Phys. Rev. Lett. 83, 4983 (1999).Google Scholar