Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T07:39:16.750Z Has data issue: false hasContentIssue false

Spin-Polarized Eels on Ultrathin FCC Co Layers on CU(100)

Published online by Cambridge University Press:  26 February 2011

K.-P. Kamper
Affiliation:
Department of Physics and Institute for Surface and Interface Science, University of California, Irvine, CA 92717
D.L. Abraham
Affiliation:
Department of Physics and Institute for Surface and Interface Science, University of California, Irvine, CA 92717
H. Hopster
Affiliation:
Department of Physics and Institute for Surface and Interface Science, University of California, Irvine, CA 92717
Get access

Abstract

The magnetism and the electronic structure of fcc Co films epitaxially grown on Cu(100) was investigated by spin polarized electron energy loss spectroscopy. Films above 2 atomic layers thickness show ferromagnetic order above room temperature with the magnetization in the plane. An exchange splitting of 0.8 eV and a Stoner gap of 300 meV is found. Films thinner than 1.6 layers do not show remanent magnetization above 80 K. No evidence for enhanced moments in monolayer films is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hopster, H. and Abraham, D.L., Phys. Rev. B40, 7054 (1989).Google Scholar
2. Venus, D. and Kirschner, J., Phys Rev. B37, 2199 (1988).Google Scholar
3. Abraham, D.L. and Hopster, H., Phys. Rev. Lett. 62, 1157 (1989).CrossRefGoogle Scholar
4. Dodt, Th., Ph.D. Thesis, University of Dusseldorf (1988)Google Scholar
5. Abraham, D.L., Ph.D. Thesis, Univ. of California, Irvine (1989)Google Scholar
6. Hopster, H., Phys. Rev. B42, 2540 (1990).CrossRefGoogle Scholar
7. Kamper, K.-P., Abraham, D.L., and Hopster, H., in preparationGoogle Scholar
8. Gonzales, L., Miranda, R., Salmeron, M., Verges, J.A., Yndurain, F., Phys. Rev. B24, 3248 (1981).Google Scholar
9. Clarke, A., Jennings, G., Willis, R.F., Rous, P.J., and Pendry, J.B., Surf. Sci. 187, 327 (1987).Google Scholar
10. Schneider, C.M., Bressler, P., Schuster, P., Kirschner, J., Miguel, J.J.. and Miranda, R., Phys. Rev. Lett. 64, 1059 (1990).CrossRefGoogle Scholar
11. Pescia, D., Zampiere, G., Stampanoni, M., Bona, G.L., Willis, R.F, and Meier, F., Phys. Rev. Lett. 58, 933 (1987).Google Scholar
12. Li, Hong and Tonner, B.P., Surf. Sci. 237, 141 (1990).Google Scholar
13. Miguel, J.J., Cebollada, A., Gallego, J.M., Ferrer, S., Miranda, R., Schneider, C.M., Bressler, P., Garbe, J., Bethke, K., and Kirschner, J., Surf. Sci. 2111212, 723 (1989).Google Scholar
14. Himpsel, F.J. and Eastman, D.E., Phys. Rev. B21, 3207 (1980)Google Scholar
15. Scneider, C.M. et al. , J. Appl. Phys. (1991); in pressGoogle Scholar
16. Bagayoko, D., Ziegler, A., and Callaway, J., Phys. Rev. B27, 7046 (1983).Google Scholar
17. Moruzzi, V.L., Janak, J.F., and Williams, A.R., Calculated Electronic Properties of Metals (Pergamon, New York, 1978)Google Scholar
18. Freeman, A.J. and Fu, C.L., J. Appl. Phys. 61, 3356 (1987).Google Scholar