Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T06:07:53.875Z Has data issue: false hasContentIssue false

Spin-Orbit Coupling Versus Exchange Interaction in Actinide Metals

Published online by Cambridge University Press:  01 February 2011

Gerrit van der Laan
Affiliation:
[email protected], Diamond Light Source, Synchrotron Radiation, RAL, Didcot, OX11 0DE, United Kingdom
Kevin Thomas Moore
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, Livermore, CA, 94550, United States
Get access

Abstract

The electronic structure of the actinide metals, Th, U, Np, Pu, Am, and Cm, is investigated using electron energy-loss spectroscopy (EELS) in a transmission electron microscope, together with many-electron spectral calculations. At the N4,5 edge, sum rule analysis gives the angular part of the spin-orbit interaction per hole, showing that while light metals (Th and U) follow LS coupling, heavier metals (Pu, Am, and Cm) follow intermediate coupling of the 5f states. The intermediate coupling is near the jj limit for Pu and Am, but strongly shifted towards the LS coupling limit for Cm. At the O4,5 edge many-electron spectral calculations show that the prepeak corresponds to a “forbidden” transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Moore, K. T. and Laan, G. van der, “Nature of the 5f states in actinide metals”, Rev. Mod. Phys., in progress (2008).10.1103/RevModPhys.81.235Google Scholar
2 Laan, G. van der, Moore, K. T. Tobin, J. G. Chung, B. W. Wall, M. A. and Schwartz, A. J. Phys. Rev. Lett. 93, 097401 (2004).Google Scholar
3 Moore, K. T. Laan, G. van der, Tobin, J. G. Chung, B. W. Wall, M. A. and Schwartz, A.J., Ultramicroscopy 106, 261 (2006).Google Scholar
4 Moore, K. T. Wall, M. A. Schwartz, A. J. Chung, B. W. Morton, S. A. Tobin, J. G. Lazar, S. Tichelaar, F. D. Zandbergen, H. W. Söderlind, P., and Laan, G. van der, Philos. Mag. 84, 1039 (2004).Google Scholar
5 Thole, B. T. and Laan, G. van der, Phys. Rev. B 38, 3158 (1988); Phys. Rev. A 38, 1943 (1988); G. van der, Laan and B.T., Thole, Phys. Rev. Lett. 60, 1977 (1988).Google Scholar
6 Moore, K. T. Laan, G. van der, Wall, M. A. Schwartz, A. J. and Haire, R. G. Phys. Rev. B 76, 073105 (2007).10.1103/PhysRevB.76.073105Google Scholar
7 Moore, K. T. Laan, G. van der, Haire, R. G. Wall, M. A. Schwartz, A. J. and Söderlind, P., Phys. Rev. Lett. 98, 236402 (2007).10.1103/PhysRevLett.98.236402Google Scholar
8 Moore, K. T. Wall, M. A. Schwarz, A. J. Chang, B. W. Shuh, D. K. Schulze, R. K. and Tobin, J. G. Phys. Rev. Lett. 90, 196404 (2003)Google Scholar
9 Moore, K. T. and Laan, G. van der, Ultramicroscopy 107, 1201 (2007).Google Scholar
10 Butterfield, M. Moore, K. T. Laan, G. van der, Wall, M. A. and Haire, R. G. Phys. Rev. B 77, 113109 (2008).Google Scholar
11 Laan, G. van der, Lect. Notes Phys. 697, 143 (2006).Google Scholar
12 Thole, B. T. Laan, G. van der, Fuggle, J. C. Sawatzky, G. A. Karnatak, R. C. and Esteva, J. M., Phys. Rev. B 32, 5107 (1985).Google Scholar
13 Starke, K. Navas, E. Arenholz, E. Hu, Z. Baumgarten, L. Laan, G. van der, Chen, C. T. and Kaindl, G. Phys. Rev. B 55, 2672 (1997).Google Scholar
14 Cowan, R. D. J. Opt. Soc. Am. 58, 808 (1968).Google Scholar
15 Cowan, R. D.The Theory of Atomic Structure and Spectra” (University of California Press, Berkeley, CA, 1981).Google Scholar
16 Laan, G. van der and Thole, B.T., Phys. Rev. B 53, 14458 (1996).Google Scholar
17 Laan, G. van der, Phys. Rev. B 57, 112 (1998).Google Scholar
18 Laan, G. van der and Thole, B. T. Phys. Rev. B 43, 13401 (1991).Google Scholar
19 Laan, G. van der and Kirkman, I. W. J. Phys.: Condens. Matter 4, 4189 (1992).Google Scholar
20 Laan, G. van der, Thole, B. T. Sawatzky, G. A. Fuggle, J. C. Karnatak, R. C. Esteva, J. M. and Lengeler, B. J. Phys. C: Solid State Phys. 19, 817 (1986).Google Scholar
21 Heathman, S. Haire, R. G. Bihan, T. Le, Lindbaum, A. Idiri, M. Normile, P. Li, S. Ahuja, R. Johansson, B. and Lander, G. H. Science 309, 110 (2005).Google Scholar
22 Laan, G. van der, unpublished.Google Scholar
23 Gouder, T. Havela, L. Wastin, F. and Rebizant, J. Europhys. Lett. 55, 705 (2001).Google Scholar
24 Havela, L. Gouder, T. Wastin, F. and Rebizant, J. Phys. Rev. B 65, 235118 (2002).Google Scholar
25 Shim, J. H. Haule, K. and Kotliar, G. Nature (London) 446, 513 (2007).Google Scholar
26 Shick, A. B. Kolorenc, J. Havela, L. Drchal, V. and Gouder, T. Europhys. Lett. 77, 17003 (2007).Google Scholar
27 Lashley, J. C. Lawson, A. McQueeney, R. J. and Lander, G. H. Phys. Rev. B 72, 054416 (2005).Google Scholar
28 McCall, S. K. Fluss, M. J. Chung, B. W. McElfresh, M. W. Jackson, D. D. and Chapline, G. F., Proc. Natl. Acad. Sci. U.S.A. 103, 17179 (2006).Google Scholar
29 Ogasawara, H. Kotani, A. and Thole, B. T. Phys. Rev. B 44, 2169 (1991).10.1103/PhysRevB.44.2169Google Scholar
30 Laan, G. van der, J. Phys.: Condens. Matter 3, 7443 (1991).Google Scholar