Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T04:42:57.619Z Has data issue: false hasContentIssue false

Spin-Orbit Coupling and Zero-Field Electron Spin Splitting in AlGaN/AlN/GaN Heterostructures with a Polarization Induced Two-Dimensional Electron Gas

Published online by Cambridge University Press:  01 February 2011

Ç. Kurdak
Affiliation:
[email protected], University of Michigan, Physics Department, Physics Department, Randall Laboratory, 450 Church Street, University of Michigan, Ann Arbor, MI, 48109, United States, (734) 647 4650
N. Biyikli
Affiliation:
[email protected], Virginia Commonwealth University, Department of Electrical Engineering, Richmond, VA, 23284, United States
H. Cheng
Affiliation:
[email protected], University of Michigan, Physics Department, Ann Arbor, MI, 48109, United States
U. Ozgur
Affiliation:
[email protected], Virginia Commonwealth University, Department of Electrical Engineering, Richmond, VA, 23284, United States
H. Morkoç
Affiliation:
[email protected], Virginia Commonwealth University, Department of Electrical Engineering, Richmond, VA, 23284, United States
V. I. Litvinov
Affiliation:
[email protected], WaveBand/Sierra Nevada Corporation, 15245 Alton Parkway, Suite 100, Irvine, CA, 92618, United States
Get access

Abstract

We studied spin-orbit coupling in wurtzite AlxGa1−xN/AlN/GaN heterostructures with different Al concentrations using weak antilocalization measurements at 1.6 K. Using the persistent photoconductivity effect we change the carrier density in controllable manner. We find that the electron spin splitting energies does not scale linearly with the Fermi wavevector at high carrier densities. From this deviation, for the first time, we are able to extract the cubic spin-orbit parameter for this material system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dietal, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science, 287, 1019 (2000).Google Scholar
2. Rashba, E. I., Fiz Tverd. Tela (Leningard) 2, 1224 (1960) [Sov. Phys. Solid State2, 1109 (1960)].Google Scholar
3. Dresselhaus, G., Phys. Rev. 100, 580 (1955).Google Scholar
5. Voon, L. C. L. Y., Villatzen, M., Cardona, M., (1996).Google Scholar
6. Litvinov, V. I., cond-matt/0608179; will appear in Appl. Phys. Lett. (2006).Google Scholar
7. Lo, I., Wang, W. T., Gau, M. H., Tsay, S. F., and Chiang, J. C., Phys. Rev. B. 72, 245329 (2005).Google Scholar
8. Tang, N., Shen, B., Wang, M. J., Yang, Z. J., Xu, K., Zhang, G. Y., Chen, D. J., Xia, Y., Shi, Y., Zhang, R. and Zheng, Y. D., Phys. Rev. B 73, 037301 (2006).Google Scholar
9. Kurdak, Ç., Biyikli, N., Ozgur, U., Morkoç, H., and Litvinov, V. I., Phys. Rev. B 74, 113308 (2006).Google Scholar
10. Thillosen, N., Cabanas, S., Kaluza, N., Guzenko, V. A., Hartdegen, H., and Schapers, Th., Phys. Rev. B 73, 241311(R) (2006).Google Scholar
11. Schmult, S., Manfra, M. J., Punnoose, A., Sergent, A. M., Baldwin, K. W., and Molnar, R. J., Phys. Rev. B 74, 033302 (2006)Google Scholar
12. Biyikli, N., Kurdak, Ç., Ozgur, U., Ni, X. F., Fu, Y., and Morkoç, H., cond-matt/0608274; will appear in J. Appl. Phys. (2006).Google Scholar
13. Iordanskii, S. V., Lyanda-Geller, Y. B., and Pikus, G. E., JETP Lett. 60, 206 (1994).Google Scholar