Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T06:42:08.275Z Has data issue: false hasContentIssue false

Spin-Dependent STM Tunnelling Study of the Patterned Magnetite (111) Surface

Published online by Cambridge University Press:  01 February 2011

N. Berdunov
Affiliation:
SFI Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2, Ireland
S. Murphy
Affiliation:
SFI Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2, Ireland
G. Mariotto
Affiliation:
SFI Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2, Ireland
I. V. Shvets
Affiliation:
SFI Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2, Ireland
Get access

Abstract

Under oxidizing preparation conditions the magnetite (111) surface reconstructs to a highly ordered superlattice. This surface reconstruction represents an oxygen-termination of the magnetite bulk. We employ spin-polarized (SP) STM to study the spin-dependent tunnelling between a magnetite (111) sample and an antiferromagnetic tip through a vacuum barrier. Atomic scale STM images show significant magnetic contrast corresponding to variations in the local surface states induced by oxygen vacancies. The local variations of the tunnelling magnetoresistance around these vacancies correspond to 150%. By employing SP-STM measurements and First principles calculations we could conclude that an oxygen top-layer considerably changes the SP properties of the magnetite surface. We explain the appearance of the superstructure in terms of electron-lattice instability due to the surface strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, G., and Suzuki, Y., Phys. Rev. Lett. 89, 276601 (2002).Google Scholar
2. Dedkov, Yu. S., Rüdiger, U., and Güntherodt, G., Phys. Rev. B 65, 064417 (2002).Google Scholar
3. Moodera, J. S., Nowak, J., and van de Veerdonk, J. M., Phys. Rev. Lett. 80, 2941 (1998).Google Scholar
4. Oleynik, I.I., and Tsymbal, E.Y., J. Appl. Phys. 93, 6429 (2003).Google Scholar
5. Ding, H.F., Wulfhekel, W., Henk, J., Bruno, P., and Kirschner, J., Phys. Rev. Lett. 90, 116603 (2003).Google Scholar
6. Bode, M., Rep. Prog. Phys. 66, 523 (2003)Google Scholar
7. Minakov, A., and Shvets, I.V., Surf. Sci. 236, L377 (1990).Google Scholar
8. Shvets, I.V., Wiesendanger, R., Burgler, D., Tarrach, G., Guntherodt, H.J., and Coey, J.M.D., J. Appl. Phys. 71, 5489 (1992).Google Scholar
9. Kubetzka, A., Bode, M., Pietzsch, O., and Wiesendanger, R., Phys. Rev. Lett. 88, 57201 (2002).Google Scholar
10. Mariotto, G., Murphy, S., and Shvets, I.V., Phys. Rev. B 66, 245426 (2002).Google Scholar
11. Ceballos, S.F., Mariotto, G., Murphy, S., and Shvets, I.V., Surf. Sci. 523, 131 (2003).Google Scholar
12. Shaikhutdinov, Sh.K., Ritter, M., Wang, X.-G., Over, H., and Weiss, W., Phys. Rev. B 60, 11062 (1999).Google Scholar
13. Shvets, I.V., Berdunov, N., Mariotto, G., and Murphy, S., Europhys. Lett. 63, 867 (2003).Google Scholar
14. Berdunov, N., Murphy, S., Mariotto, G., and Shvets, I.V., Phys. Rev. B submitted, (2003).Google Scholar
15. Jullier, M., Phys. Lett. A 54, 225 (1975).Google Scholar
16. Tsymbal, E.Y., Mryasov, O.N., and Le Clair, P.R., J. Phys.: Condens. Matter 15, R109 (2003).Google Scholar