Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:25:12.840Z Has data issue: false hasContentIssue false

Spherical Aberration Corrected Z-STEM Characterization of CdSe and CdSe/ZnS Nanocrystals

Published online by Cambridge University Press:  21 March 2011

James McBride
Affiliation:
Vanderbilt University, Nashville TN, 37235, U.S.A
Tadd C. Kippeny
Affiliation:
Vanderbilt University, Nashville TN, 37235, U.S.A
Stephen J. Pennycook
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
Sandra J. Rosenthal
Affiliation:
Vanderbilt University, Nashville TN, 37235, U.S.A
Get access

Abstract

Spherical aberration corrected Atomic Number Contrast Scanning Electron Microscopy (Z-STEM) has recently demonstrated an amazing ability to not only obtain sub-angstrom levels of detail but also yield chemical information at that level as well. With an optimal probe size of 0.8 Å, extremely detailed images of CdSe nanocrystals were obtained showing the lattice structure and surface morphology. As an example of the usefulness of this technique, a sample of CdSe nanocrystals prepared using trioctylphosphine oxide (TOPO) as the surfactant was compared to a sample of CdSe prepared using a mixture of TOPO and hexadecylamine (HDA) as the surfactant. The TOPO/HDA nanocrystals exhibit a narrower size distribution and several orders of magnitude greater fluorescence compared to that of the TOPO only nanocrystals. Interestingly, the Z-STEM images show a striking difference in nanocrystal morphology as the result of the addition of HDA to the reaction mixture. This result suggests surface morphology can be tuned through judicious choice of surfactant. A second example of Z- STEM imaging involves the characterization of CdSe/ZnS core/shell nanocrystals. The mass contrast afforded by Z-STEM can easily distinguish between core and shell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Swofford, L. A.; Rosenthal, S.J. Molecular and Nanomaterial-Based Photovoltaics, in Molecular Nanoelectronics, Reed, E. M. A. and Lee, T., Editor. 2003, American Scientific Publishers.Google Scholar
2. Greenham, N.C.; Peng, X; Alivisatos, A. P. Phys. Rev. B, 1996. 54,: p. 17628.Google Scholar
3. Erwin, M. M.; Kadavanich, A. V.; McBride, J.; Kippeny, T.; Pennycook, S.; Rosenthal, S. J.; Eur. J. Phys. D, 2001. 16: p. 275277.Google Scholar
4. Henglein, A., Pure Appl. Chem., 1984. 56: p. 1215.Google Scholar
5. Henglein, A., Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 1997. 101: p. 1562.Google Scholar
6. Nanda, J.; Sapra, S.; Sarma, D.; Chandrasekharan, N.; Hodes, G.; Chem. of Mater., 2000. 12: p. 1018.Google Scholar
7. Kho, R.; Nguyen, L; Torres-Martinez, C. L.; Mehra, R. K.; Biophys. Res. Commun., 2000. 272: p. 29.Google Scholar
8. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science, 2002. 298: p. 1759.Google Scholar
9. Gerion, D.; Parak, W. J.; Williams, S. C.; Zanchet, D.; Micheel, C. M.; Alivisatos, A.P. J. Am. Chem. Soc., 2002. 124: p. 7070.Google Scholar
10. Tomlinson, I. D.; McBride, J.; Blakely, R. D.; Rosenthal, S. J.; Biotechnology, in press.Google Scholar
11. Rosenthal, S. J.; Tomlinson, I. D.; Adkins, E. M.; Schroeter, S.; Adams, S.; Swafford, L. A.; McBride, J.; Wang, Y.; DeFelice, L. J.; Blakely, R. D.; J. Am. Chem. Soc., 2002(124): p. 4586.Google Scholar
12. Wu, X.; Liu, H.; Lui, J.; Haley, K. N.; Treadway, J.A.; Larson, P. J.; Ge, N.; Peale, F.; Bruchez, M. P.; Nature Biotechnology, 2003. 21: p. 41.Google Scholar
13. Klein, D. L.; Roth, R.; Lim, A. K.; Alivisatos, A. P.; McEuen, P. L. Nature, 1997. 389: p. 669.Google Scholar
14. Gao, M. Y.; Lesser, C.; Kirstein, S.; Mohwald, H.; Rogach, A. L.; Weller, H. J. Appl. Phys., 2000. 87: p. 2297.Google Scholar
15. Konenkamp, R.; Hoyer, P.; Wahi, A. J. Appl. Phys., 1996. 79: p. 7029.Google Scholar
16. Vlasov, Y. A.; Yao, N.; Norris, D. J. Adv. Mater., 1999. 11: p. 165.Google Scholar
17. Wange, X., Qu, L.; Zhang, J.; Peng, X.; Xiao, M. Nano Letters, 2003. 3(8): p. 1103.Google Scholar
18. Myung, N.; Bae, Y.; Bard, A.J. Nano Lett., 2003. 3(6): p. 747.Google Scholar
19. Manna, L.; Scher, E. C.; Li, L.; Alivisatos, A. P. J. Am. Chem. Soc., 2002. 124(24): p. 7136.Google Scholar
20. Donega, C. M.; Hickley, S.G.; Wuister, S. F.; Vanmaekelbergh, D.; Meijerink, A. J. Phys. Chem. B, 2003. 107: p. 489.Google Scholar
21. Landes, C.; Burda, C.; Braun, M.; El-Sayed, M. A. J. Phys. Chem. B, 2001. 105: p. 2981.Google Scholar
22. Kadavanich, A.K.A.M., Tolbert, S. H.; Peng, X.; Schlamp, M. C.; Lee, J. C.; Alivisatos, A. P.; Adv. Microcryst. Nanocryst. Semicond. 1996, Symp. 1996.Google Scholar
23. Shiang, J.; Kadavanich, A.V.; Grubbs, R. K.; Alivisatos, A. P.; J. Phys. Chem., 1995. 99: p. 17417.Google Scholar
24. Peng, X. G.; Wickham, J.; Alivisatos, A. P. J. Am. Chem. Soc., 1998. 120: p. 5343.Google Scholar
25. Talapin, D. V.; Rogach, A. L.; Kronowski, A.; Haase, M.; Weller, H. Nano Lett., 2001. 1(4): p. 207.Google Scholar
26. Peng, Z. A.; Peng, X. P. J. Am. Chem. Soc., 2001. 123: p. 1389.Google Scholar
27. Reis, P.; Bleuse, J.; Pron, A.; Nano Lett., 2002. 2: p. 781.Google Scholar
28. Reis, P.; Caryon, S.; Bleuse, J., Pron, A.; Synth. Met., 2003. 139: p. 649.Google Scholar
29. Hines, M.; P. G., , J. Phys. Chem., 1996. 100.Google Scholar
30. Dabbousi, B.; Rodriguez-Viejo, J.; Mikulec, F.; Heine, J.; Matoussi, H.; Ober, R.; Jensen, K.; Bawendi, M.; J. Phys. Chem. B., 1997. 101: p. 9463.Google Scholar
31. Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V.C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc., 2000. 122(49): p. 12142.Google Scholar
32. Taylor, J.; Kippeny, T.; Rosenthal, S. J. J. Clust. Sci., 2001. 12(4): p. 571.Google Scholar