Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:49:23.685Z Has data issue: false hasContentIssue false

Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures

Published online by Cambridge University Press:  03 September 2012

C. Wetzel
Affiliation:
High Tech Research Center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
T. Takeuchi
Affiliation:
High Tech Research Center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
H. Amano
Affiliation:
High Tech Research Center and Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
I. Akasaki
Affiliation:
High Tech Research Center and Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
Get access

Abstract

Uniaxial wurtzite group-III nitride heterostructures are subject to large polarization effects with significant consequences for device physics in optoelectronic and transport device applications. A central aspect for the proper implementation is the experimental quantification of polarization charges and associated fields. In modulated reflection spectroscopy of thin films and heterostructures of AlGaInN we observe pronounced Franz-Keldysh oscillations that allow direct and accurate readings of the field strength induced by polarization dipoles at the heterointerfaces. In piezoelectric GaInN/GaN quantum wells this dipole is found to induce an asymmetry in barrier heights with a respective splitting of interband transitions. This splitting energy appears to reflect in the transitions of spontaneous and stimulated luminescence in the well. From these experiments the polarization dipole is identified as controllable type-II staggered band offset between adjacent barrier layers which can extend the flexibility in AlGaInN bandstructure design. The derived field values can serve as important input parameters in the further interpretation of the entire system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Akasaki, I. and Amano, H., Jpn. J. Appl. Phys. 36, 5393 (1997).Google Scholar
2 Properties, Synthesis, Characterization, and Applications of Gallium Nitride and related Compounds Eds. Edgar, J., Strite, T.S., Akasaki, I., Amano, H., and Wetzel, C. (INSPEC, IEE, London, UK, 1999) (ISBN 0 85296 953 8).Google Scholar
3 Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Crystal Growth 98, 209 (1989).Google Scholar
4 Amano, H., Kito, M., Hiramatsu, K., Akasaki, I., Jpn. J. Appl. Phys. 28, L 2112 (1989).Google Scholar
5 Bykhovski, A.D., Kaminski, V.V., Shur, S., Chen, Q.C., and Khan, M.A., Appl. Phys. Lett. 68, 818 (1996).Google Scholar
6 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R 10024 (1997).Google Scholar
7 Chichibu, S., Azuhata, T., Sota, T., Nakamura, S., Appl. Phys. Lett. 70, 2822 (1997).Google Scholar
8 Narukawa, Y., Kawakami, Y., Fujita, S., Fujita, S., and Nakamura, S., Phys. Rev. B 55, R 1938 (1997).Google Scholar
9 El-Masry, N.A., Piner, E.L., Liu, S.X., Bedair, S.M., Appl. Phys. Lett. 72, 40 (1998).Google Scholar
10 Wetzel, C., Takeuchi, T., Yamaguchi, S., Katoh, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998).Google Scholar
11 Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., J. Appl. Phys. 85, 3786 (1999).Google Scholar
12 Sakai, H., Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Amano, H., and Akasaki, I., J. Crystal Growth 189, 831 (1998).Google Scholar
13 Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., Phys. Rev. B (in press).Google Scholar
14 Aspnes, D.E., Phys. Rev. B 10, 4228 (1974); Phys. Rev. 153, 972 (1967).Google Scholar
15 Meyer, B.K., Volm, D., Graber, A., Alt, H.C., Detchprohm, T., Amano, H., and Akasaki, I., Solid State Commun. 95, 597 (1995).Google Scholar
16 Wetzel, C., Takeuchi, T., Amano, H., Akasaki, I., Jpn. J. Appl. Phys. 38, L 163 (1999).Google Scholar
17 Wetzel, C., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. (in press).Google Scholar
18 Wetzel, C., Takeuchi, T., Amano, H., and Akasaki, I., in Wide-Bandgap Semiconductors for High Power, High Frequency and High Temperature, Eds. DenBaars, S., Palmour, J., Shur, M., and Spencer, M., Mat. Res. Soc. Sympos. Proc. 512, 181 (1998).Google Scholar
19 Wetzel, C., Nitta, S., Takeuchi, T., Yamaguchi, S., Amano, H., and Akasaki, I., MRS Internet J. Nitride Semicond. Res. 3, 31 (1998).Google Scholar
20 Esaki, L., IEEE J. Quantum Electronics QE–22, 1611 (1986).Google Scholar
21 Zrenner, A., Reisinger, H., Koch, F., Ploog, K., Maan, J.C., Phys Rev B 33, 5607 (1986).Google Scholar
22 Sala, F. della, Carlo, A. di, Lugli, P., Bernardini, P.F., Fiorentini, V., Scholz, R., and Jancu, J.-M., Appl. Phys. Lett. 74, 2002 (1999).Google Scholar
23 Leroux, M., Grandjean, N., Laugt, M., Massies, J., Gil, B., Lefebvre, P., and Bigenwald, P., Phys. Rev. B 58, R 13371 (1998).Google Scholar
24 Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L 382 (1997).Google Scholar
25 Chichibu, S., Azuhata, T., Sota, T., Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
26 Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., and Yamada, N., Appl. Phys. Lett. 73, 1691 (1998).Google Scholar
27 Wetzel, C., Detchprohm, T., Takeuchi, T., Amano, H., and Akasaki, I., J. Electron. Mater. (in press).Google Scholar
28 Watanabe, S., Yamada, N., Yamada, Y., Taguchi, T., Takeuchi, T., Amano, H., and Akasaki, I., Phys. Stat. Sol. B 216, 335 (1999).Google Scholar