No CrossRef data available.
Article contents
Spectroscopic Studies of Chemical Reactions and Dynamics in Sol-Gel Matrices
Published online by Cambridge University Press: 21 February 2011
Abstract
The synthesis of sol-gel glasses containing organic and organometallic molecular dopants has been well established as an approach for creating new optical materials. Some of these properties are dependent upon chemical reactions which occur in porous xerogel matrices during the sol-gel process or when encapsulated molecules are exposed to other molecules in solution. In this paper, the study of two different types of chemical reactions in the pores of xerogel matrices is reported. In one case copper phthalocyanine is used to characterize dimerization within the pores. The results show that dimer formation is most likely to occur towards the end of the drying stage as the dye concentration in the pores increases from solvent evaporation. A second example involves the use of a pump-probe technique to determine the rate of proton recombination inside the pores of silica monoliths. The behavior of sols and gels is similar to aqueous solution while recombination of protons in the xerogel seems to be affected by the walls of the pores.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998