Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:43:25.519Z Has data issue: false hasContentIssue false

Spectroscopic Diagnostics and Kinetics of Low Pressure Processing Plasmas

Published online by Cambridge University Press:  28 February 2011

Alan Garscadden*
Affiliation:
Air Force Wright Aeronautical Laboratories Wright-Patterson AFB OH 45433
Get access

Abstract

A review is presented of a negative glow model of low frequency, low pressure plasma reactors and the salient features are described using silane mixtures as the example.The input requirements for this model and similar models are also discussed in order to establish the sensitivity of the homogeneous plasma reactions to operational conditions.Calculations are presented to demonstrate the sensitivity to mixture ratios, buffer gas type and power loading.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schneider, F., Zeit.fur angewandte Physik, 6, 456 (1954).Google Scholar
2. Kushner, M.J., J.Appl.Phys., 54, 4958 (1983).CrossRefGoogle Scholar
3. Moore, C.A., Davis, G.P., Gottscho, R.A., Phys.Rev.Lett., 52, 538 (1984).Google Scholar
4. Mandich, M.L., Gaebe, C.E., Gottscho, R.A., J.Chem.Phys., 83, 3349 (1985).CrossRefGoogle Scholar
5. Hebner, G.A. and Verdeyen, J.T., IEEE Trans.Plasma Science, PS–14, 132 (1986).Google Scholar
6. Leckey, R.C.G., Higginson, G.S., Emeleus, K.G., Nature, 198, 1187 (1963).Google Scholar
7. Aleskovskii, A.M., Soviet Phys., Techl Phys., 17, 1458 (1973).Google Scholar
8. Leckey, R.C.G., Coulter, A.G., Higginson, G.S., Webb, T.G., Proc.Phys.Soc., 82, 947 (1963).Google Scholar
9. Turban, G., Catherine, Y., Grollean, B., Plasma Chem.and Plasma Processing, 2, 61 (1982).Google Scholar
10. Chatham, H., Hils, D., Robertson, R., Gallagher, A., J.Chem.Phys., 81, 1770 (1984).Google Scholar
11. Haaland, P. and Rahbee, A., Chem.Phys.Lett., 114, 571–4 (1985).Google Scholar
12. Gordon, M., Chem.Phys.Lett., 59, 410 (1978).Google Scholar
13. Govers, T.R., Genoit, W., Boerboom, A., Intl.J.Mass Spec.Ion.Proc., 62, 341 (1984).Google Scholar
14. Ding, A., Cassidy, R.A., Cordis, L.S., Lampe, F.W., J.Chem.Phys., 83, 3426 (1985).CrossRefGoogle Scholar
15. Perrin, J. and Schmitt, J.P.M., Chem.Physics, 67, 167 (1982).Google Scholar
16. Haller, I., J.Vac.Sci.Technol., A1, 1376 (1983).Google Scholar
17. DeJoseph, C.A. Jr, Haaland, P.D., Garscadden, A., IEEE Trans.Plasma Sci. PS–14, 165 (1986).Google Scholar
18. Pollock, W.J., Faraday Discussion Chem.Soc., 2, 2919 (1968).Google Scholar
19. Andrews, M.A., Kirkendall, K.A., Garscadden, A. (to be published).Google Scholar
20. Emeleus, K.G. and Woolsey, G.A., “Discharge in Electronegative Gases,” Barnes and Noble, Inc., (New York 1970).Google Scholar
21. von Ebinghaus, H., Kraus, K., Muller-Duysing, W., Nevert, H., Naturforsch, Z., 19a, 732 (1964).Google Scholar
22. Potzinger, P. and Lampe, F.W., J.Phys.Chem., 73, 3912 (1969).Google Scholar
23. Srivastava, S.K., Gaseous Electronics Conference, Monterey CA, Oct.1985.Google Scholar
24. van Roosmalen, A.J., Appl.Phys.Lett., 42, 416 (1983).Google Scholar
25. Chatham, H. and Gallagher, A., J.Appl.Phys., 58, 159 (1985).Google Scholar
26. Haaland, P.D., (private communication, (1986)).Google Scholar