Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T03:50:04.224Z Has data issue: false hasContentIssue false

Spectroscopic Characterization of the Nitridation Process of Polymeric Precursors to SI-M-N-O Systems (M=Ti, Zr, Al)

Published online by Cambridge University Press:  25 February 2011

F. Babonneau
Affiliation:
Chimie de la Matière Condensée, Université Paris 6, 4 place Jussieu, 75252 Paris, (France)
G. D. Soraru
Affiliation:
Dipartimento di Ingegneria dei Materiali, Universita di Trento, 38050 Mesiano-Trento, (Italy)
Get access

Abstract

A commercial polycarbosilane was modified with various metallic alkoxides to get mixed ceramic precursors in the Si-M-C-O systems (M=Ti, Zr Al). Pyrolysis under ammonia leads to the formation of various ceramic materials depending on the nature of M : Si3N4/TiN, Si3N4/ZrO2 or β′-SiAlON phases.

The polymer-to-ceramics conversion have been studied by MAS-NMR (29 Si, 27Al) and X-ray absorption (Ti K-edge). This paper will show how these two complementary spectroscopic techniques can be used to follow the nitridation process by probing local environments of different elements. In addition, it will be pointed out how X-ray absorption can be a powerful tool for the detection of the crystallization of nitride cubic phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peuckert, M., Vaahs, T., Brück, M., Adv. Mater., 2. 398 (1990)Google Scholar
2. Yajima, S., Handbook of Composites. Vol.1 - W, Strong Fibers; Watt, and Perov, B.V. Eds, 1985, Elsevier, pp. 201.Google Scholar
3. Fischer, H.E., Larkin, D.J., Interrante, L.V., Mater. Res. Soc. Bull., XVI, 59 (1191)Google Scholar
4. Eiedel, R., Seher, M., Becker, G., J. Europ. Ceram. Soc., 5, 113 (1989).Google Scholar
5. Sorarb, G.D., Babonneau, F., Mackenzie, J.D., J. Mater. Sci., 25, 3886 (1990).Google Scholar
6. Taki, T., Inui, M., Okamura, K., Sato, M., J. Mater. Sci.Letters, 8, 1119 (1989).Google Scholar
7. Laffon, C., Flank, A.M., Lagarde, P., Laridjani, M., Hagege, R., Olry, P., Cotteret, J., Dixmier, J., Miquel, J.L., Hommel, H., Legrand, A.P., J. Mater. Sci., 24, 1503 (1989).Google Scholar
8. Babonneau, F., Barré, P., Livage, J., Verdaguer, M., Mater. Res. Soc. Symp. Ser. 180, 1035 (1990).Google Scholar
9. Yajima, S., Iwai, T., Yamamura, T., Okamura, K., Hasegawa, Y., J. Mater. Sci., 16, 1349 (1981).Google Scholar
10. Yajima, S., Hasegawa, Y., Hayashi, J., Iimura, M., J. Mater. Sci., 13, 2569 (1978).Google Scholar
11. Teo, B.K., in EXAFS: Basic Principles and Data analysis. Inorganic Chemistry Concepts, Vol. 6, Springer Verlag, Berlin, 1986.Google Scholar
12. Babonneau, F., Sorarii, G.D., Thorne, K.J., Mackenzie, J.D., J. Am. Ceram. Soc. 74, 1725 (1991).Google Scholar
13. Sorarii, G. D., Mercadini, M., Maschio, R. Dal, Taulelle, F., Babonneau, F. (submitted to J. Am. Ceram. Soc.)Google Scholar
14. Carduner, K.R., Carter, R.O. III, Milberg, M.E., Crosbie, G.M., Anal. Chem., 59, 2794 (1987)Google Scholar
15. Smith, M.E., J. Phys. Chem. 96, 1444 (1992).Google Scholar
16. Babonneau, F., Livage, J., Sorarh, G.D., Carturan, G., Mackenzie, J.D., New J. Chem. 14, 539 (1990)Google Scholar
17. Sorarii, G.D., Ravagni, A., Maschio, R. Dal, Carturan, G., Babonneau, F., J. Mater. Res. 7, 1266 (1992)Google Scholar