Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:40:46.314Z Has data issue: false hasContentIssue false

Spectroscopic Characterization of Nanoscale Modification of Passivated Si(100) Surface by STM

Published online by Cambridge University Press:  21 February 2011

F. PÉRez-Murano
Affiliation:
Dept.Física-Electrònica. Universitat Autònoma de Barcelona. 08193-Bellaterra., SPAIN
N. Barniol
Affiliation:
Dept.Física-Electrònica. Universitat Autònoma de Barcelona. 08193-Bellaterra., SPAIN
X. Aymerich
Affiliation:
Dept.Física-Electrònica. Universitat Autònoma de Barcelona. 08193-Bellaterra., SPAIN
Get access

Abstract

The electrochemical modification of H-passivated Si(100) surface is produced and characterized by Scanning Tunneling Microscopy and Spectroscopy (STM/STS) operating in air. In order to better understand this nanometer scale modification, we have characterized spectroscopically the modified region. From the current-voltage (I/V) curves, dI/dV versus V curves and tip to sample spacing versus voltage (s/V) curves (at constant current) we have concluded that the modification induces a local electrochemical change on the surface, which in turn produces both, a decrease of the local density of surface states and a variation of the band bending in the silicon surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Avouris, Ph. and Lyo, I.W.. Appl. Surf. Sci. 60, 426 (1992).Google Scholar
[2] Eigler, D.M., Lutz, C.P., Rudge, W.E.. Nature 352, 600 (1991).Google Scholar
[3] Mamin, H.J., chiang, S., Birk, H., Guethner, P.H. and Rugar, D.. J. Vac. Sci. Technol. B 9, 1371 (1991).Google Scholar
[4] Nagahara, L.A., Thundat, T. and Lindsay, S.M.. Appl. Phys. Lett. 57, 270 (1990).Google Scholar
[5] Barniol, N., Pdrez-Murano, F. and Aymerich, X.. Appl. Phys. Lett. 61, 462 (1992).Google Scholar
[6] Pérez-Murano, F., Barniol, N. and Aymerich, X.. J. Vac. Sci. Technol. B, 11, 651 (1993).Google Scholar
[7] Snow, E.S., Campbell, P.M., McMarr, P.J.. Appl. Phys. Lett. 63, 749 (1993).Google Scholar
[8] Grunthaner, F.J. and Grunthaner, P.J.. Mater. Sci. Rep. 1, 69 (1987).Google Scholar
[9] M.Grundner, Graf, D., Hahn, P.O. and Snegg, A.. Solid State Technology. 69 (February 1991).Google Scholar
[10] Feenstra, R.M., Stroscio, J.A. and Fein, A.P.. Surf. Sci. 181, 295 (1987).CrossRefGoogle Scholar
[11] Weimer, M., Kramer, J. and Baldeschweiler, J.D.. Phys. Rev. B 39, 5572 (1989).Google Scholar
[12] See for example Chen, C. Julian. Introduction to Scanning Tunneling Microscopy. (Oxford University Press) 1993.Google Scholar
[13] Bell, L.D., Kaiser, W.J., Hecht, M.H. and Grunthaner, F.J.. Appl. Phys. Lett 52, 278 (1988).Google Scholar
[14] Jahanmir, J., West, P.E., Young, A. and Rhodin, T.N.. J. Vac. Sci. Technol A 7, 2741 (1989).CrossRefGoogle Scholar
[15] Card, H.C. and Rhoderick, E.H.. J. Phys. D 4, 1589 (1971).Google Scholar