Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T22:48:12.209Z Has data issue: false hasContentIssue false

Special Aspects of Diffusion in Metallic Thin Films

Published online by Cambridge University Press:  22 February 2011

D. Gupta*
Affiliation:
IBM Thomas J. Watson Research CenterYorktown Heights, New York 10598
Get access

Abstract

The diffusion processes in thin films are largely controlled by their microstructure and chemistry. In this publication, we discuss briefly how the recently devel-oped experimental techniques coupled with the available analytical treatments have been able to characterize these processes. Actually a hierarchy of diffusion rates along the atomic defects in thin films, namely the vacancies, grain-boundaries and dislocations, has been found. The interactions of solutes present in thin films with the atomic defects in altering the diffusion rates are discussed. It has also been possible to measure diffusion in amorphous metallic alloy films and its features are described. Finally, we outline the general principles for modifying diffusion in thin films to achieve the desired technological objectives.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See the XXV anniversary issue IBM J. Res.and Develop., 25, (1981).Google Scholar
2. Sec Poate, J. M., Tu, K. N. and Mayer, J. W., Eds., Thin.Films: Interdiffusion and Reactions. New York (1978) Chapter 1, 68.Google Scholar
3. Nowick, A. S. and Burton, J. J., Eds., Diffusion in Solids. Academic Press, New York (1975).Google Scholar
4. Peterson, N. L. and Siegel, R. W., Eds., Properties of Atomic Defects in metals, North-Holland. New York (1978).Google Scholar
5. Murch, G. F. and Nowick, H. S., Eds., Diffusion in Crystalline Solids. Academic Press. New York (1984).Google Scholar
6. Jin-Ichi, Takamura, Massao-Doyama, and Michio, Kiritani, Eds., Point Defects and Defects Interactions in Metals. North-Holland, New York (1982).Google Scholar
7. Reuter, W., Nuc. Inst. and Methods in Phys. Res., 218, 391 (1983).Google Scholar
8. Gangulee, A., Ho, P. S. and Tu, K. N.,. Eds., Low Temperature Diffusion and Appilication. to Thin Films. American Elsevier. New York (1975).Google Scholar
9. Richardson, J. H. and Peterson, R. V., Eds., Systematic Materials Analysis Vol.1, Academic Press, New York (1974).Google Scholar
10. Fried, L. J., Havas, J., Lechaton, J. S., Logan, J. S., Paal, G. and Totta, P. A., IBM J. Res. and Develop, 26, 362 (1982).Google Scholar
11. Liotard, J. L., Gupta, D., Psaras, P. A. and Ho, P. S., J. Appl. Phys. 57, 1895 (1985).CrossRefGoogle Scholar
12. Gupta, D., Lazarus, D. and Lieberman, D. S., Phys. Rev. 153, 863 (1967).CrossRefGoogle Scholar
13. Gjostein, N. A., in Diffusion, Amer. Soc. for Metals, Metals Park, Ohio (1973) p. 241.Google Scholar
14. Gupta, D. and Rosenberg, R., in Grain Boundaries in Engineering Materials, Proc. IV Bolton Landing Conf., Walter, J. L., Westbrook, J. H., Wood-ford, D. A., Eds., Claitors Pub. Baton Rouge, LA (1975) p. 181.Google Scholar
15. Gupta, D. and Rosenberg, R., Thin Solid FIilms 25, 171 (1975).Google Scholar
16. Barreau, G., Brunel, G., Cizeron, G. and Lacombe, P., Mem. Sci. Rev. Metall.. 68, 357 (1971).Google Scholar
17. Gupta, D. and Oberschmidt, J., IBM Res. Report No. 10996, Feb.21 (1985).Google Scholar
18. Gupta, D., Metall. Trans. (AIME), 8A, 1431 (1977).CrossRefGoogle Scholar
19. d'IIeurle, F. M. and Ho, P. S., see Chapter 8 in Ref. 2.Google Scholar
20. Nicolet, M.-A., Thin Solid Films 52, 415 (1978).Google Scholar
21. Upthegrove, W. R. and Sinnott, M. J., Trans. Am. Soc. Met., 50, 1031 (1958).Google Scholar
22. Gupta, D. and Kim, K. K., J. Appl. Phys., 51, 2066 (1980).CrossRefGoogle Scholar
23. Robinson, J. T. and Peterson, N. L., Surf. Sci., 31, 586 (1972).CrossRefGoogle Scholar
24. Gupta, D., J. Appl. Phys. 44, 4455 (1973).CrossRefGoogle Scholar
25. Shearer, M. P. Bauer, C. L. and Jordon, A. G., Thin Solid Films, 61, 273 (1979).CrossRefGoogle Scholar
26. Gupta, D. and Asai, K. W., Thin Solid Films, 22, 121 (1974).Google Scholar
27. Gupta, D., Phys. REv. 7, 586 (1973).CrossRefGoogle Scholar
28. Chamberlain, M. P. and Lehoczky, S. L., Thin Solid Films, 12, 189, (1977).CrossRefGoogle Scholar
29. Wildmann, H. S., Howard, J. K. and Ho, P. S., J. Vac. Sci. Technol., 12, 75 (1975).CrossRefGoogle Scholar
30. Soria, F. and Sacedon, J. L., Thin Solid Films, 60, 113 (1979).Google Scholar
31. Gupta, D. and Asai, K. W., Electrochem. Soc. Meet. Ext. Abstr., 75–1, 255 (1975).Google Scholar
32. Tomkins, H. G., J. Electrochem. Soc., 122, 983 (1975).Google Scholar
33. Harrison, L. G., Trans. Faraday Soc., 57, 1191 (1961).Google Scholar
34. Hart, E. W., Acta Met., 5, 597 (1957).Google Scholar
35. Whipple, R. T. P., Philos. Mag., 45, 1225 (1954).Google Scholar
36. Suzuoka, T., Trans. Jpn. Inst. Met. 2, 251 (1961).Google Scholar
37. LeClaire, A. D., Br. J. Appl. Phys. 14, 351 (1963).Google Scholar
38. Gilmer, G. H. and Farrell, H. H., J. Appl. Phys. 47, 3792 and 4373 (1976).Google Scholar
39. Hwang, J. M. C., Pan, J. P. and Balluffi, R. W., J. Appl. Phys., 59, 1349 (1979).Google Scholar
40. Coble, R. L., J. Appl. Phys. 34, 1679 (1963).CrossRefGoogle Scholar
41. Chaudhari, P., J. Appl. Phys. 45, 4339 (1974).Google Scholar
42. Murakami, M. and Kuan, T. S., Thin Solid Films, 66, 148 (1980).CrossRefGoogle Scholar
43. Luborsky, F. E., Ed., Amorphous Metallic Alloys, Butterworths, London, (1983), see Chapters 14–22.Google Scholar
44. Tu, K. N. and Berry, B. S., J. Appl. Phys. 63, 3283 (1972).CrossRefGoogle Scholar
45. Gupta, D., Tu, K. N. and Asai, K. W., Phys. Rev. Lett. 35, 796 (1975).Google Scholar
46. Gupta, D., Tu, K. N. and Asai, K. W., Thin Solid Films 90, 131 (1982).Google Scholar
47. Chen, H. S., Kimerling, L. C., Poate, J. M. and Brown, W. L., Appl. Phys. Lett., 32, 461 (1978).Google Scholar
48. Roseblum, M. P., Spaepan, F. and Turnbull, D., Appl. Phys. Lett. 37, 184 (1980).CrossRefGoogle Scholar
49. Greer, A. L., J. Non-Crystalline Solids 61 and 62, 737 (1984).Google Scholar
50. Greer, A. L. and Spaepan, I., in Synthetic Modulated Structure Materials. Chang, L. and Giessen, B. C., Eds., Academic Press. New York (1984).Google Scholar
51. Luborsky, F. F., J. Appl. Phys. 54, 5732 (1983).Google Scholar
52. Howard, J. K., White, F. and Ho, P. S., J. Appl. Phys. 49, 4083 (1978).Google Scholar
53. Revitz, M. and Totta, P. A., Electrochem. Soc. Ext. Abstr. 72, 631 (1972).Google Scholar
54. Blodgett, A. J. and Barbour, D. R., IBM J. Res. Develop., 26. 30 (1982).Google Scholar
55. Morabito, J. M., Thomes, J. H. III, and Lesh, N. G., IEEE Trans. Parts. Hy-brids, Packag, PIIP-11, 253 (1975).Google Scholar
56. Bakker, H., in Diffusion in Crystalline Solids Murch, G. E. and Nowick, A. S. Eds., Academic Press, New York (1984) p. 189.CrossRefGoogle Scholar
57. Herd, S., Tu, K. N. and Ahn, K. Y., Appl. Phys. Lett. 42 597 (1983).CrossRefGoogle Scholar
58. Anderson, W. T. Jr., Christou, A., and Davey, J. E., in Interfaces and Contacts. Ludeke, R. and Rose, K. Eds., (MRS Sym. Proc. 18), North-Holland, New York (1983) p. 57.Google Scholar
59. Nicolet, Marc A., Ilkka Suni and Manuela Finetti, Solid State Tech. 26. 129 (1983).Google Scholar
60. Marc, Wittmer, J. Vac. Sci. and Technol. A2, 273 (1984).Google Scholar
61. Wiley, J. D., Perepezko, J.H., Nordman, J. F. and Guo, K. -J, IEEE Ind. Electro., IE-29, 154 (1982).Google Scholar